

Shale Network: Making Knowledge from Numbers

Impoundment of water for hydrofracturing in the Pennsylvania landscape

Hydrodesktop Demo 5-20-13

Shale Network Team with special thanks to Cesar A. Simon, Paul Grieve, Sina Arjmand, Maggie Peacock, Jon Pollak (CUAHSI), Patryk Soika, Dave Yoxtheimer, Radisav Vidic, Jorge D. Abad

www.hydrodesktop.org

Where can I get HydroDesktop when I go back home?

- It can be downloaded from <u>http://www.hydrodesktop.org/</u> (click on the "Download' tab and download the latest version of Hydrodesktop and install it on a Windows machine.
- There is no Mac version; however, this version works on a Mac running the Windows operating system.

What we'll do today

- Open HydroDesktop
- Discuss the overall approach
- Run searches together:
 - Search the metadata catalog for the data we want
 - Download data of interest
 - Use built-in tools to do simple analysis
- Just learning HD: 1) compare Br and Ba in different PA counties
- More advanced HD: (1) and (2) compare Br along river reaches in southwest PA

If your computer is not turned on, go ahead and turn it on by moving the mouse or touching a key...

cates students from Pennsylvänia, the nation and the Work

Dur research, scholarship, and creative activity promote honan and econ

Press CTRL + ALT + DELETE to log on

If you get this screen, hit Enter

Find HydroDesktop by clicking on the Start Button (FourSquare-Globe thing) in the lower left corner, or by typing **HydroDesktop** into the blank, or by finding the **HydroDesktop** icon on the desktop and clicking on it...

It opens slowly!

When HydroDesktop opens this is the screen you see...hit **OK....then wait (it is slow to open)**

Every member of Shale Network or Penn State --

Please raise your hand.. please ask for help from any of these folks for help before you get lost! If you fear you will need lots of help, please stand up and we will move a Penn Stater or Shale Networker right next to you

First screen you see: Map Interface

and corresponds to a shape file –the file that has the info that is plotted on the map

If you ever lose this layout...

Huber 207129 40% Califul

This is an amazing piece of software and it is under active development by scientists around the country. This is a collaborative effort. Unfortunately, there are glitches and you will most likely discover some of them. To play, you can choose the **Pan "Hand"** and move to PA, and choose (**Magnifying glass +)** to expand (it works like Google Maps)

We will try one or two different searches (or more in Advanced room?)

- (1) Each person in the room will pick a different county in PA or WV (your choice) and we will look at Br, then Ba, in the surface waters in that county...We will ask, do we see differences? We will write the high values for each county on board
- (2) Each person will look at Br in rivers in southwestern PA to assess variations in Br concentrations along the reach, and as a function of discharge

What is the Hydrologic Information System?

home computer

I can't remember the difference between data and metadata

- The data is the number that was measured (concentration, flow rate, etc.)
- Metadata is all the other stuff you need to know to understand how to think about that number (how the sample was taken, what type sensor was used, where measurement was made, units, time, quality information, analytical technique, etc.)
- Metadata answers all the questions, Who? What? Where? When? How?
- Metadata is why this data system seems so complicated – if we just stored the data values alone, that would not be so hard

This is the standard approach to finding data

To avoid a glitch, this is how we will proceed

This is an amazing piece of software and it is under active development by scientists around the country. This is a collaborative effort. Unfortunately, there are glitches and you will most likely discover some of them.

What is the Hydrologic Information System?

To start the search for Data...Open Search Tab up in the Ribbon

There are four ways to set the region to search

The first way (don't do this) to set a region under the Search Tab:

• Draw Rectangle to define a search (don't do

The second way (don't do this) to delineate a region under the Search Tab: Select Features and click on a polygon on the map

The 3rd way to do this is to choose a watershed using the delineate tool by clicking Delineate and then touching one spot on a river (don't do this)

Delineating the upper part of the Conemaugh River watershed

The 4th way to delineate a region under the Search Tab: Please do this!

• Select by Attribute (i.e. County)..this is how you will choose your county. Please choose your home county or a favorite county with unconventional gas wells

Waterways impacted by larger spills

2008 to 2011, spills > 400 gallons

- Pine creek (Lycoming, Airfoam)
- Stevens creek (Susquehanna, flowback)
- Brush run (Washington, flowback)
- Little Laurel creek (Clearfield, flowback)
- Dunkle creek (Hopewell, frack fluid)
- Towanda creek (flowback)
- Ten mile creek tributary (Washington, mud)

Sept 2012-March 2013 (all < 400 gallons)

- Harts Run (Sullivan, bentonite)
- Jacobs creek (Westmoreland, drilling mud)
- Mill creek (Sullivan, sediment)
- Black Water run (Sullivan, turbid discharge)
- Slack run tributary (Lycoming, sediment)
- Blacklick creek (Indiana, bentonite)
- Muncy creek (Lycoming, sediment)
- Thorn creek (Butler, drilling fluids)
- Wellmans creek, Salt Lick creek (Sullivan, discharge)
- Brion creek (Lycoming, hydrostatic test water and sediment)
- Big Bottom run (Sullivan, sediment)

Search for Data by setting Time Range

different range of interest..we suggest 1/1/1960 to today

Search for Data Source...click on Select Data Sources

This is where you choose what computer around the country you will search for Data

After clicking "Select Data Sources" in the Search ribbon, you get a pop up window: choose **Select None** ... then check **Shale Network** and **Ok**

NEXT Search for the Parameter of Interest (Keyword)

If you don't know how to describe an analyte (keyword) you can use the drop down menu to find parameters that have been measured that you are interested in

Type "Bromide" in the top search box.

Please note that before running any search, always check the keyword...I find that Keyword resets sometimes to "All." If you search on All, you look for all analytes for the region and time of interest

Another way to search for the Parameter of Interest (Keyword)

Later (not now) when you get better at it, use the multiple keywords pull down menu, and type in your variable choice. In the pull-down you can see all the different types of data

Before you run Search, check back to see that you only have Bromide checked!

We are trying to avoid the glitch where HD reverts back to "All"

Click the **Search** button...this grabs the <u>metadata</u>

Beware: if you try to download too much metadata in this classroom the program might get hung up. That is why we suggest you <u>search for Bromide in a single county</u>

Screenshot from downloading the data...

Click OK

and then click **Hide** to hide the Download window (you may get a few errors, don't worry). If you get all errors, try it again.

What Did You Find? Here: Clinton County

The program has returned the <u>metadata</u> (not the data) to your computer! The map shows you where data are available matching your search
You just went out to other computers and grabbed metadata

home computer

You might need to re-center your map

Right click on Shale Network in Legend and choose

"Zoom to Layer"

But before downloading data, let's hover over data sites and look at metadata a bit. Point mouse to a symbol and hover...

You can hover over a site location and a popup will tell you about that data point. You could even download data for that point, but we won't do this because it is tedious to do all data points this way

You might see metadata in the popup that looks like this

- ShaleNetwork:PA_DEP_26R...these are data that Carl Kirby and students harvested from PA DEP 26R forms. THIS IS FLOWBACK/PRODUCTION WATER DATA
- ShaleNetwork: ALLARM_xxx..these are data collected by ALLARM volunteers
- ShaleNetwork: DEP_SAC046_"name"...these are data from the PA DEP using their SAC 46 analyses
- ShaleNetwork:SRBC...data from SRBC
- ShaleNetwork:LHU...data from Dr. K and the Senior Environmental Corps
- ShaleNetwork:COP Tract 653 101H_Well...data from Haluszczak 2011 THIS IS FLOWBACK/PRODUCTION WATERDATA
- ShaleNetwork:Tioga County P1 Gas Well Production water...THIS IS PRODUCTION WATER

Can you find a location with production/flowback water chem... i.e. one that has "PADEP 26Rxxx" or ...COP Tract 653 xxx.xx

...or...Br_D_fw or ...Location I...

Let's change the **base map** to look at a well. Put in Google Satellite under Map Tab (at the right) and look for wells

- ESRI Hydro Base Map
- ESRI Topo
- Street Map (Bing, Google, ESRI, Yahoo)
- Satellite Imagery (Bing, ESRI, Google, Yahoo)

If you change the base map but don't see anything...

The Legend is a hierarchy. Whatever layer is listed on top in the Legend, will appear "on top" in the map. This means if a layer is opaque, it may be hiding layers underneath.

Try unclicking some of the layers (Countries; Canada Provinces; U.S. States;) and this may help you see the Google Satellite map

Legend	Ψ×
🖂 💋 Map Layers	
🖃 📝 Data Sites	
🖃 🗷 EPA STORET	
In Number of Observations In the second secon	
⊟ 🗹 Shale Network	
In Number of Observations In the second secon	
NWIS Daily Values	
The Number of Observations	
🖃 🗹 Base Map Data	
🖃 🔽 Rivers	
—	
🖃 🗹 Online Basemap	
🗆 🔽 Lakes	
🗆 🗹 us_counties	
🗉 🔲 U.S HUC	
🖃 🗷 U.S. States	
INAME INAME INAME INAM	
🖃 🗷 Canada Provinces	
Countries	
I NAME	

🗄 Legend 🔯 time series

Zoom in and look at the well on Google Satellite!

You can adjust opacity of base map on Map Ribbon

Re-center your map

Right click on Shale Network in Legend and choose

"Zoom to Layer"

Let's change the **base map** now to ESRI World Topo under Map Tab (at the right)

Change your base map layer here (it may take time) CUAHSI HydroDesktop * ۵ (?) Geostatistical Too Table Edit HvdroR HvdroModeler Help Graph ESRI Hydro Base Ma -View Attribute Add Laver. Remove Pan Zoom To Select Deselect Identify Opacity: 60 All

- ESRI Hydro Base Map
- ESRI Topo
- Street Map (Bing, Google, ESRI, Yahoo)
- Satellite Imagery (Bing, ESRI, Google, Yahoo)

Let's explore all your metadata.. right click on the data source of interest in the Legend (ShaleNetwork) and click View Attribute Table to explore the metadata

Example: Attribute table for all analytes in Clinton County

The attribute table displays numerous fields including Data Source, Site Name, Variable, Start and End Dates, Sample Site Name Sample Medium, and Units.

medium

DE - Shale Network																			
Data Source	Site Name	Var Name	Site Code	Var Code	Keyword	Valu	Start Date	End Date	Service URL	Service Code	Data Type	Value	Sample Med	Time	Time	Latitude	Longitude	Is Regular	Units
•																			
ShaleNetworkODM	Baker Run near Glen	Specific conductance	ShaleNetwor	ShaleNetwork:Cond2	Specific co		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	1	41.24565506	-77.608161926		microsiemens per centimeter
ShaleNetworkODM	Baker Run near Glen	Oxygen, dissolved	ShaleNetwor	ShaleNetwork:DO	Oxygen, d		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	0	41.24565506	-77.608161926		milligrams per liter
ShaleNetworkODM	Baker Run near Glen	pН	ShaleNetwor	ShaleNetwork:pH	pН		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	0	41.24565506	-77.608161926		pH Unit
ShaleNetworkODM	Baker Run near Glen	Temperature	ShaleNetwor	ShaleNetwork:T_C	Temperat		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Continuous	Field Observation	Surface Water	day	0	41.24565506	-77.608161926	1	degree celsius
ShaleNetworkODM	Baker Run near Glen	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk2	Alkalinity	1	2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		miligrams per liter
ShaleNetworkODM	PA DEP 26R035-21161	Arsenic, total	ShaleNetwor	ShaleNetwork:arsenic_fw	Arsenic		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
ShaleNetworkODM	PA DEP 26R035-21156	Arsenic, total	ShaleNetwor	ShaleNetwork:arsenic_fw	Arsenic		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		micrograms per liter
ShaleNetworkODM	PA DEP 26R035-21161	Benzene	ShaleNetwor	ShaleNetwork:benzene_fw	Benzene		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
ShaleNetworkODM	PA DEP 26R035-21161	Bromide, total	ShaleNetwor	ShaleNetwork:bromide_fw	Bromide		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		miligrams per liter
ShaleNetworkODM	PA DEP 26R035-21156	Bromide, total	ShaleNetwor	ShaleNetwork:bromide_fw	Bromide		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		miligrams per liter
ShaleNetworkODM	PA DEP 26R035-21156	Chloride, total	ShaleNetwor	ShaleNetwork:chloride_fw	Chloride		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		miligrams per liter
ShaleNetworkODM	PA DEP 26R035-21161	Chloride, total	ShaleNetwor	ShaleNetwork:chloride_fw	Chloride		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		miligrams per liter
ShaleNetworkODM	PA DEP 26R035-21156	рH	ShaleNetwor	ShaleNetwork:pH_fw	pH		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	field observation	Flowback water	day	0	41.369400024	-77.559402466		pH Unit
ShaleNetworkODM	PA DEP 26R035-21161	рH	ShaleNetwor	ShaleNetwork:pH_fw	pН		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	field observation	Flowback water	day	0	41.194999695	-77.687698364		pH Unit
ShaleNetworkODM	Baker Run near Glen	рH	ShaleNetwor	ShaleNetwork:pH2	pН	1	2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		pH Unit
ShaleNetworkODM	PA DEP 26R035-21156	Strontium, total	ShaleNetwor	ShaleNetwork:strontium_fw	Strontium		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		micrograms per liter
ShaleNetworkODM	PA DEP 26R035-21161	Strontium, total	ShaleNetwor	ShaleNetwork:strontium_fw	Strontium		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
ShaleNetworkODM	PA DEP 26R035-21161	Toluene	ShaleNetwor	ShaleNetwork:toluene_fw	Toluene		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
ShaleNetworkODM	PA DEP 26R035-21156	Acidity, total acidity	ShaleNetwor	ShaleNetwork:Acidity_fw	Acidity		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21161	Acidity, total acidity	ShaleNetwor	ShaleNetwork:Acidity_fw	Acidity		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21161	Silver, total	ShaleNetwor	ShaleNetwork:Ag_fw	Silver		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21156	Silver, total	ShaleNetwor	ShaleNetwork:Ag_fw	Silver		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21156	Aluminum, total	ShaleNetwor	ShaleNetwork:AL_fw	Aluminum		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21161	Aluminum, total	ShaleNetwor	ShaleNetwork:AL_fw	Aluminum		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		milligrams per liter
ShaleNetworkODM	Baker Run near Glen	Alkalinity, bicarbo	ShaleNetwor	ShaleNetwork:Alk_CHO3	Alkalinity		2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		milligrams per liter
ShaleNetworkODM	Baker Run near Glen	Alkalinity, carbonate	ShaleNetwor	ShaleNetwork:Alk_CO3	Alkalinity	:	2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21156	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk_fw	Alkalinity		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21161	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk_fw	Alkalinity		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		milligrams per liter
ShaleNetworkODM	Baker Run near Glen	Gross alpha radion	ShaleNetwor	ShaleNetwork:Alpha_F_p	Alpha radi		1 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	0	41.24565506	-77.608161926		picocuries per liter

The Attribute Table is one way to explore the metadata

But...let's only select surface waters in the Attribute Table

Site Name

Type "Surface water" here under sample medium

ale Network																			
ta Source	Site Name	Var Name	Site Code	Var Code	Keyword	Valu	Start Date	End Date	Service URL	Service Code	Data Type	Value Type	mple Med	Time	Time	Latitude	Longitude	Is Regular	Units
												-							
ShaleNetworkODM	Baker Run near Glen	Specific conductance	ShaleNetwor	ShaleNetwork:Cond2	Specific co		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	1	41.24565506	-77.608161926		microsiemens per centimeter
ShaleNetworkODM	Baker Run near Glen	Oxygen, dissolved	ShaleNetwor	ShaleNetwork:DO	Oxygen, d		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	0	41.24565506	-77.608161926		milligrams per liter
ShaleNetworkODM	Baker Run near Glen	pH	ShaleNetwor	ShaleNetwork:pH	pH		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	0	41.24565506	-77.608161926		pH Unit
ShaleNetworkODM	Baker Run near Glen	Temperature	ShaleNetwor	ShaleNetwork:T_C	Temperat		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Continuous	Field Observation	Surface Water	day	0	41.24565506	-77.608161926	V	degree celsius
ShaleNetworkODM	Baker Run near Glen	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk2	Alkalinity		2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21161	Arsenic, total	ShaleNetwor	ShaleNetwork:arsenic_fw	Arsenic		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
haleNetworkODM	PA DEP 26R035-21156	Arsenic, total	ShaleNetwor	ShaleNetwork:arsenic_fw	Arsenic		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		micrograms per liter
ShaleNetworkODM	PA DEP 26R035-21161	Benzene	ShaleNetwor	ShaleNetwork:benzene_fw	Benzene		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
haleNetworkODM	PA DEP 26R035-21161	Bromide, total	ShaleNetwor	ShaleNetwork:bromide_fw	Bromide		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21156	Bromide, total	ShaleNetwor	ShaleNetwork:bromide_fw	Bromide		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		milligrams per liter
haleNetworkODM	PA DEP 26R035-21156	Chloride, total	ShaleNetwor	ShaleNetwork:chloride_fw	Chloride		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		milligrams per liter
ihaleNetworkODM	PA DEP 26R035-21161	Chloride, total	ShaleNetwor	ShaleNetwork:chloride_fw	Chloride		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21156	pH	ShaleNetwor	ShaleNetwork:pH_fw	pH		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	field observation	Flowback water	day	0	41.369400024	-77.559402466		pH Unit
ShaleNetworkODM	PA DEP 26R035-21161	pН	ShaleNetwor	ShaleNetwork:pH_fw	pН		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	field observation	Flowback water	day	0	41.194999695	-77.687698364		pH Unit
ShaleNetworkODM	Baker Run near Glen	pН	ShaleNetwor	ShaleNetwork:pH2	pН		2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		pH Unit
shaleNetworkODM	PA DEP 26R035-21156	Strontium, total	ShaleNetwor	ShaleNetwork:strontium_fw	Strontium		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		micrograms per liter
ShaleNetworkODM	PA DEP 26R035-21161	Strontium, total	ShaleNetwor	ShaleNetwork:strontium_fw	Strontium		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
haleNetworkODM	PA DEP 26R035-21161	Toluene	ShaleNetwor	ShaleNetwork:toluene_fw	Toluene		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
haleNetworkODM	PA DEP 26R035-21156	Acidity, total acidity	ShaleNetwor	ShaleNetwork:Acidity_fw	Acidity		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		milligrams per liter
haleNetworkODM	PA DEP 26R035-21161	Acidity, total acidity	ShaleNetwor	ShaleNetwork:Acidity_fw	Acidity		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		milligrams per liter
haleNetworkODM	PA DEP 26R035-21161	Silver, total	ShaleNetwor	ShaleNetwork:Ag_fw	Silver		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21156	Silver, total	ShaleNetwor	ShaleNetwork:Ag_fw	Silver		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21156	Aluminum, total	ShaleNetwor	ShaleNetwork:AL_fw	Aluminum		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		milligrams per liter
ShaleNetworkODM	PA DEP 26R035-21161	Aluminum, total	ShaleNetwor	ShaleNetwork:AL_fw	Aluminum		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		miligrams per liter
ShaleNetworkODM	Baker Run near Glen	Alkalinity, bicarbo	ShaleNetwor	ShaleNetwork:Alk_CHO3	Alkalinity		2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		milligrams per liter
ShaleNetworkODM	Baker Run near Glen	Alkalinity, carbonate	ShaleNetwor	ShaleNetwork:Alk_CO3	Alkalinity		2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		miligrams per liter
haleNetworkODM	PA DEP 26R035-21156	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk_fw	Alkalinity		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		miligrams per liter
haleNetworkODM	PA DEP 26R035-21161	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk_fw	Alkalinity		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		miligrams per liter
haleNetworkODM	Baker Run near Glen	Gross alpha radion	ShaleNetwor	ShaleNetwork:Alpha_F_p	Alpha radi		1 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	0	41.24565506	-77.608161926		picocuries per liter

When you type in Surface Water at the top, this filters out everything but surface water. Select all surface waters: Now click on a line and drag your mouse down over all the lines. All the surface water data should be highlighted.

Then in the Ribbon, click "Download Selected"

Explore the Data using the Table Tab

😂 CUAHS	I HydroDesktop	- DotSpat		-rojects.Nort	hAmerica.dsp	<*								ζ
File	Map Search	Table	Graph	Edit Hyd	lroR Help								۵	0
Import	Export	C Refresh Re	emove	C:\Users\sue	\AppData\Local\	Temp\HydroDeskto	Change	Sequence Paralle		Se	e individual			
Data Impo		Table	-	ПУ	Current De	itabase ratii		Options		1:4				
time serie	s				First	Prev N	lext Last			LI	ne series,	Sita Cada	Var Codo	Ť ^
Refres	Check Unch	leck Delete	e Ont	ion								Site Code	var coue	_
Selection	Tool Simple Fil	Complex Filter	r			DrakeHollowR	E_Branch_up *3	HallRunBurney	SRenovoWell * 2	ch		ShaleNetwork:LHU HallRun Headw	ShaleNetwork	cl
Check	SeriesID Va	riableName	:	SiteName	DateTime	*1	Barium,	*4	Barium,		Electrical conductivity	ShaleNetwork:LHU HallRun Headw	ShaleNetwork	ct
V	1 Bari	ium, dissolved	d [DrakeHollowRi	Unit	Barium,	dissolved	Barium, dissolved	dissolved milligrams per		Copper, dissolved	ShaleNetwork:LHU_DiamondRockHo	. ShaleNetwork	ct
	3 Bari	ium dissolve	d F	Branch up		milligrams per	liter	milligrams per	liter		Oxygen, dissolved	ShaleNetwork:LHU_DiamondRockHo	. ShaleNetwork	cl
	4 Bari	ium dissolver	d F		12/13/2010		1				Electrical conductivity	ShaleNetwork:LHU_DiamondRockHo	. ShaleNetwork	cl
	2 Bari	ium, dissolver	a r	SRonovoWoll	6/13/2011		3				Solids, total dissolved	ShaleNetwork:LHU_Diameter.	. ShaleNetwork	at
		ium, uissoivei		Sivenovovven	7/1/2011	1		0	0		Carbon, total organic	ShaleNetwork:LHU_Diamor	. ShaleNetwork	al
					7/28/2011	1		1	0		Copper, dissolved	ShaleNetwork:LHU_Dra	. ShaleNetwork	al
					0/10/2011	1		1	0		Oxygen, dissolved	ShaleNetwork:LHU owRun.	. ShaleNetwork	ct
					8/18/2011	1		1	0		Electrical conductivity	ShaleNetwork:LH HollowRun.	. ShaleNetwork	al
1 1					9/1/2011	1		1	2		Solids, total dissolved	ShaleNetwork akeHollowRun.	. ShaleNetwork	at
					9/8/2011	1		1			Carbon, total organic	ShaleNety DrakeHollowRun.	. ShaleNetwork	at
											Copper, dissolved	ShaleNe AU_E_Branch_up	ShaleNetwork	at
											Oxygen, dissolved		ShaleNetwork	al
											Electrical conductivity	Scroll and	ShaleNetwork	сt
											Solids, total dissolved	Scionana	ShaleNetwork	at
					l						Carbon, total organic	ovnloro	r ShaleNetwork	at
		ام ما		ام م م ا							Solids, total dissolved	explore w	ShaleNetwork	al
	леск т	ine ad	owi	nioad	ea da	ta sets	that y	ou wai	זד דס		Carbon, total organic		ShaleNetwork	al
				_							Copper, dissolved	ShaleNetwork:LHU_HallRunBurneysRo	ShaleNetwork	al
E e	explore	ealso	o it	vou F	Right (llick or	n a Dat	a entr	V		Oxygen, dissolved	ShaleNetwork:LHU_HallRunBurneysRo	ShaleNetwork	al
	1		-	/	0				/		Electrical conductivity	ShaleNetwork:LHU_HallRunBurneysRo	ShaleNetwork	
2	nd cho	nose	Pro	nertie	ov se	u can lo	ook at	the			Solids, total dissolve	ShaleNetwork:LHU_HallRunBurneyski	ShaleNetwork	
											Carbon, total to	ShaleNetwork: LHU_HallKunBurneysKo	ChaleNetwork	
r	chetan	at a									Oppen, disso	ShaleNetwork: HUL SPanovoWell	ShaloNotwork	
	inclaud	ια									Charterian and and a straight	ChalaMaturadu UUL Chanava Mall	ChalaNatural	
1					<u> </u>									•
📰 Legend	🔯 time series				Map Ta	ble Graph	Edit HydroR			• ×	◀ Ⅲ		•	+
					laver: Shale N	letwork Selected: 4	Ready	1.						

WE

6:03 AM

5/13/2013

🔺 - 🧌 📊 🌓 🍣

Sequence vs. Parallel

Parallel allows you to view multiple time series side by side

CUAHSI HydroDesktop - DotSpatial.SampleProjects.via					
Map Search Table Graph Edit Hydrok Hay					
port Export Refresh Remove	eub kuleroriesktob krew	nge Sequence Pa	arallel		
Limport Data Export Laole Current D	atabase Path	Uptions			
	Fint	Prev	Next	Last	
freeh Check Al Uncheck Al Delete Options			West Branch		
ALL (*) Smole Filter (*) Complex Filter		Creek near	Susquehanna		
ant Saturd VariableName Stations	DateTma	Beech Creek Station PA * 1	Renovo, PA*		
reus peresio variauerraine Stervane	Unt	Discharge.	2 Discharge,		
2 Discharge, scholarder per second West Desch Comp.	abases Direct	second	cubic feet per		
 vauriege, ownureen per second west branch busqu 	enterine river c	unknown	unknown		
	5/15/1960	2010	16400		
	5/16/1960	1710	14800		
	5/17/1960	1690	12800		
	5/18/1960	3150	15700		
	5/19/1960	2480	16400		
	5/20/1960	2080	14800		
	5/21/1960	1770	13200		
	5/22/1960	2360	12400		
	5/23/1960	7410	27700		
	5/24/1960	5350	32800		
	5/25/1960	3500	22000		
	5/26/1960	2480	15600		
	5/27/1950	1950	11600		
	5/28/1960	1650	9320		
	5/29/1960	1710	8640		
	5/30/1960	1480	7400		
	5/31/1960	2480	10000		
	6/1/1960	2140	10800		
	6/2/1960	1770	9320		
	6/3/1960	1770	7700		
	6/4/1960	1380	6660		
	0.6 month	1180	5710		
	0/0/1900	1100			

Sequence view shows all values of one time series followed by all values of the next time series. Note the SeriesID

Map Search Table 6	aph Edit HydroR Help									
		8								
	C:\Users\jpollak\AppData\Local\Temp\Hydro	Desktop View	2	a calai		·				
amport export Kerrean Kerre		0	ange Sequence P	or ones						
Data Import Data Export Table	Current Database Pa	th	Options							
me series	4	× First	Prev 14 of 33	let	Last					
Refresh Check All Uncheck All Dele	Options	ValueID	SeriesID	Value	LocalDate Time	UTCOffset	CensorCode	OffsetValue	OffsetDescription	OffsetUnits
Simple Filter Complex Filter		13294	1	272	10/6/2000	0	nc			
Grey eries/D VariableName	SteName	13295	1	250	10/7/2000	0	nc			
Discharge, cubic feet p	r second Bald Eagle Creek near Beech I	13296	1	221	10/8/2000	0	nc			
2 Discharge, cubic feet p	r second West Branch Susquehanna Rr	Aer a 13297	1	213	10/9/2000	0	nc			
		13298	1	209	10/10/2000	0	nc			
		13299	1	203	10/11/2000	0	nc			
		13300	1	183	10/12/2000	0	nc			
		13301	1	182	10/13/2000	0	nc	_	_	
		13302	1	181	10/14/2000	0	nc			
		13303	1	101	10/15/2000	0	nc	_		
		13305	1	187	10/17/2000	0	00			
		13306	2	16400	5/15/1960	0	00			
		13307	2	14800	5/16/1960	0	nc			
		13308	2	12800	5/17/1960	0	nc			
		13309	2	15700	5/18/1960	0	nc			
		13310	2	16400	5/19/1960	0	nc			
		13311	2	14800	5/20/1960	0	nc			
		13312	2	13200	5/21/1960	0	nc			
		13313	2	12400	5/22/1960	0	nc			
		13314	2	27700	5/23/1960	0	nc			
		13315	2	32800	5/24/1960	0	nc			
		13316	2	22000	5/25/1960	0	nc			
		13317	2	15600	5/26/1960	0	nc			
		13318	2	11600	5/27/1960	0	nc			
		13319	2	9320	5/28/1960	0	nc			
		13320	2	8640	5/29/1960	0	nc			

Explore the Data using the Graph Tab

Repeat...pull **EPA Storet, NWIS Instantaneous Irregular Data**. You can also pull data from **The Institute for Energy & Environmental Research at Wilkes University** (they have uploaded SRBC data)

We want to repeat the whole search

- 1. Chose **keyword: bromide**
- 2. Started in **1960** and ended in **2013**
- 3. We searched Shale Network (now we will deselect SN and select both EPA Storet and NWIS Instantaneous Irregular Values in Data Services pop up)

When you return metadata, you should get multiple symbols on the map this time

Symbols are provided by each data publisher. They are typically logos of the organization. The size of the symbol depends on the number of observations at an individual site.

EPA red square USGS NWIS blue triangle ShaleNetwork blue water drop

If you don't see all the data services, be sure that there is a check mark by the Data layer in the Legend. If you don't see any Data layers, look for the little boxes and toggle between – and + You still need to get the data for each layer of data. To do this, right click the Data Service data layer in the Legend and get the Attribute Table

Map Ribbon 國 0 0 0 G 🚯 Or access the Attribute Table on the Map ribbon (Show Attribute Table) or on the Search ribbon (Show for Selected Layer). Legend 💟 time : Search Ribbon Or alternately, right click on data layer in Legend, then choose View Attribute Table from popup Elegend D time series

Please click and get the Attribute Table for EPA data first

ta Source	Site Name	Var Name	Site Code	Var Code	Keyword	Valu	Start Date	End Date	Service URL	Service Code	Data Type	Value Type	Sample Med	Time	Time	Latitude	Longitude	Is Regular	Units
					,														
ShaleNetworkODI	4 Baker Run near Glen	Specific conductance	ShaleNetwor	ShaleNetwork:Cond2	Specific co	4	2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	1	41.24565506	-77.608161926		microsiemens per centimeter
ShaleNetworkODI	4 Baker Run near Glen	Oxygen, dissolved	ShaleNetwor	ShaleNetwork:DO	Oxygen, d	4	2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	0	41.24565506	-77.608161926		milligrams per liter
ShaleNetworkOD	4 Baker Run near Glen	pH	ShaleNetwor	ShaleNetwork:pH	рH	4	2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	0	41.24565506	-77.608161926		pH Unit
ShaleNetworkODI	4 Baker Run near Glen	Temperature	ShaleNetwor	ShaleNetwork:T_C	Temperat	4	2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Continuous	Field Observation	Surface Water	day	0	41.24565506	-77.608161926	1	degree celsius
ShaleNetworkOD	4 Baker Run near Glen	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk2	Alkalinity	2	2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		milligrams per liter
ShaleNetworkOD	4 PA DEP 26R035-21161	Arsenic, total	ShaleNetwor	ShaleNetwork:arsenic_fw	Arsenic	1	2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
ShaleNetworkODI	4 PA DEP 26R035-21156	Arsenic, total	ShaleNetwor	ShaleNetwork:arsenic_fw	Arsenic	1	2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		micrograms per liter
ShaleNetworkODI	4 PA DEP 26R035-21161	Benzene	ShaleNetwor	ShaleNetwork:benzene_fw	Benzene	1	2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
ShaleNetworkODI	4 PA DEP 26R035-21161	Bromide, total	ShaleNetwor	ShaleNetwork:bromide_fw	Bromide	1	2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		miligrams per liter
ShaleNetworkODI	4 PA DEP 26R035-21156	Bromide, total	ShaleNetwor	ShaleNetwork:bromide_fw	Bromide	1	2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		miligrams per liter
ShaleNetworkOD	4 PA DEP 26R035-21156	Chloride, total	ShaleNetwor	ShaleNetwork:chloride_fw	Chloride	1	2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		miligrams per liter
ShaleNetworkOD	4 PA DEP 26R035-21161	Chloride, total	ShaleNetwor	ShaleNetwork:chloride_fw	Chloride	1	2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		miligrams per liter
ShaleNetworkODI	4 PA DEP 26R035-21156	pH	ShaleNetwor	ShaleNetwork:pH_fw	pH	1	2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	field observation	Flowback water	day	0	41.369400024	-77.559402466		pH Unit
ShaleNetworkOD	4 PA DEP 26R035-21161	рH	ShaleNetwor	ShaleNetwork:pH_fw	pН	1	2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	field observation	Flowback water	day	0	41.194999695	-77.687698364		pH Unit
ShaleNetworkOD	4 Baker Run near Glen	рH	ShaleNetwor	ShaleNetwork:pH2	pН	2	2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		pH Unit
ShaleNetworkOD	4 PA DEP 26R035-21156	Strontium, total	ShaleNetwor	ShaleNetwork:strontium_fw	Strontium	1	2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.369400024	-77.559402466		micrograms per liter
ShaleNetworkOD	4 PA DEP 26R035-21161	Strontium, total	ShaleNetwor	ShaleNetwork:strontium_fw	Strontium	1	2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
ShaleNetworkOD	4 PA DEP 26R035-21161	Toluene	ShaleNetwor	ShaleNetwork:toluene_fw	Toluene	1	2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day	0	41.194999695	-77.687698364		micrograms per liter
ShaleNetworkODI	4 PA DEP 26R035-21156	Acidity, total acidity	ShaleNetwor	ShaleNetwork:Acidity_fw	Acidity	1	2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		miligrams per liter
ShaleNetworkOD	4 PA DEP 26R035-21161	Acidity, total acidity	ShaleNetwor	ShaleNetwork:Acidity_fw	Acidity	1	2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		milligrams per liter
ShaleNetworkOD	4 PA DEP 26R035-21161	Silver, total	ShaleNetwor	ShaleNetwork:Ag_fw	Silver	1	2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		milligrams per liter
ShaleNetworkODI	4 PA DEP 26R035-21156	Silver, total	ShaleNetwor	ShaleNetwork:Ag_fw	Silver	1	2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		milligrams per liter
ShaleNetworkODI	4 PA DEP 26R035-21156	Aluminum, total	ShaleNetwor	ShaleNetwork:AL_fw	Aluminum	1	2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		milligrams per liter
ShaleNetworkODI	4 PA DEP 26R035-21161	Aluminum, total	ShaleNetwor	ShaleNetwork:AL_fiv	Aluminum	1	2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		milligrams per liter
ShaleNetworkODI	4 Baker Run near Glen	Alkalinity, bicarbo	ShaleNetwor	ShaleNetwork:Alk_CHO3	Alkalinity	2	2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		milligrams per liter
ShaleNetworkODI	4 Baker Run near Glen	Alkalinity, carbonate	ShaleNetwor	ShaleNetwork:Alk_CO3	Alkalinity	2	2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	0	41.24565506	-77.608161926		milligrams per liter
ShaleNetworkODI	4 PA DEP 26R035-21156	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk_fw	Alkalinity	1	2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.369400024	-77.559402466		milligrams per liter
ShaleNetworkODI	4 PA DEP 26R035-21161	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk_fw	Alkalinity	1	2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	0	41.194999695	-77.687698364		miligrams per liter
ShaleNetworkODI	4 Baker Run near Glen	Gross alpha radion	ShaleNetwor	ShaleNetwork:Alpha_F_p	Alpha radi	1	2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day	0	41.24565506	-77.608161926		picocuries per liter

Choose all the EPA data (these data are all surface water)

1

To download EPA data, you must highlight the appropriate lines in the attribute table

Hold Shift and click all lines (or drag the mouse over all lines) to select all contiguous entries.

Next get Attribute Table for NWIS data (right click NWIS on the Legend, choose "Show Attribute Table")

Hold down the Control key and click on lines one by one. But please check Site Name..do not select any that say "Well" or HU xxx or LY xxx...these are boreholes in each County. Hold down Control key on keyboard and Click on every data line you want to include

A	DE - Shale Network																			
	Data Source	Site Name	Var Name	Site Code	Var Code	Keyword	Valu	. Start Date	End Date	Service URL	Service Code	Data Type	Value Type	Sample Med	Time	Time	Latitude	Longitude	Is Regular	Units
٩																				
•	ShaleNetworkODM	Baker Run near Glen	Specific conductance	ShaleNetwor	ShaleNetwork:Cond2	Specific co		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day		41.24565506	-77.608161926		microsiemens per centimeter
	ShaleNetworkODM	Baker Run near Glen	Oxygen, dissolved	ShaleNetwor	ShaleNetwork:DO	Oxygen, d		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day		41.24565506	-77.608161926		milligrams per liter
	ShaleNetworkODM	Baker Run near Glen	рH	ShaleNetwor	ShaleNetwork:pH	pH		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day		41.24565506	-77.608161926		pH Unit
	ShaleNetworkODM	Baker Run near Glen	Temperature	ShaleNetwor	ShaleNetwork:T_C	Temperat		4 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Continuous	Field Observation	Surface Water	day		41.24565506	-77.608161926	V	degree celsius
	ShaleNetworkODM	Baker Run near Glen	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk2	Alkalinity		2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day		41.24565506	-77.608161926		miligrams per liter
	ShaleNetworkODM	PA DEP 26R035-21161	Arsenic, total	ShaleNetwor	ShaleNetwork:arsenic_fw	Arsenic		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day		41.194999695	-77.687698364		micrograms per liter
	ShaleNetworkODM	PA DEP 26R035-21156	Arsenic, total	ShaleNetwor	ShaleNetwork:arsenic_fw	Arsenic		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day		41.369400024	-77.559402466		micrograms per liter
	ShaleNetworkODM	PA DEP 26R035-21161	Benzene	ShaleNetwor	ShaleNetwork:benzene_fw	Benzene		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day		41.194999695	-77.687698364		micrograms per liter
	ShaleNetworkODM	PA DEP 26R035-21161	Bromide, total	ShaleNetwor	ShaleNetwork:bromide_fw	Bromide		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day		41.194999695	-77.687698364		milligrams per liter
	ShaleNetworkODM	PA DEP 26R035-21156	Bromide, total	ShaleNetwor	ShaleNetwork:bromide_fw	Bromide		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day		41.369400024	-77.559402466		miligrams per liter
	ShaleNetworkODM	PA DEP 26R035-21156	Chloride, total	ShaleNetwor	ShaleNetwork:chloride_fw	Chloride		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day		41.369400024	-77.559402466		milligrams per liter
L	ShaleNetworkODM	PA DEP 26R035-21161	Chloride, total	ShaleNetwor	ShaleNetwork:chloride_fw	Chloride		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day		41.194999695	-77.687698364		milligrams per liter
	ShaleNetworkODM	PA DEP 26R035-21156	pH	ShaleNetwor	ShaleNetwork:pH_fw	pH		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	field observation	Flowback water	day		41.369400024	-77.559402466		pH Unit
	ShaleNetworkODM	PA DEP 26R035-21161	pH	ShaleNetwor	ShaleNetwork:pH_fw	pH		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	field observation	Flowback water	day		41.194999695	-77.687698364		pH Unit
	ShaleNetworkODM	Baker Run near Glen	рH	ShaleNetwor	ShaleNetwork:pH2	pН		2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day		41.24565506	-77.608161926		pH Unit
	ShaleNetworkODM	PA DEP 26R035-21156	Strontium, total	ShaleNetwor	ShaleNetwork:strontium_fv	Strontium		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day		41.369400024	-77.559402466		micrograms per liter
	ShaleNetworkODM	PA DEP 26R035-21161	Strontium, total	ShaleNetwor	ShaleNetwork:strontium_fv	Strontium		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day		41.194999695	-77.687698364		micrograms per liter
L	ShaleNetworkODM	PA DEP 26R035-21161	Toluene	ShaleNetwor	ShaleNetwork:toluene_fw	Toluene		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	sample	Flowback water	day		41.194999695	-77.687698364		micrograms per liter
	ShaleNetworkODM	PA DEP 26R035-21156	Acidity, total acidity	ShaleNetwor	ShaleNetwork:Acidity_fw	Acidity		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day		41.369400024	-77.559402466		milligrams per liter
	ShaleNetworkODM	PA DEP 26R035-21161	Acidity, total acidity	ShaleNetwor	ShaleNetwork:Acidity_fw	Acidity		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day		41.194999695	-77.687698364		milligrams per liter
	ShaleNetworkODM	PA DEP 26R035-21161	Silver, total	ShaleNetwor	ShaleNetwork:Ag_fw	Silver		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day		41.194999695	-77.687698364		milligrams per liter
	ShaleNetworkODM	PA DEP 26R035-21156	Silver, total	ShaleNetwor	ShaleNetwork:Ag_fw	Silver		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	1	41.369400024	-77.559402466		miligrams per liter
	ShaleNetworkODM	PA DEP 26R035-21156	Aluminum, total	ShaleNetwor	ShaleNetwork:AL_fw	Aluminum		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	1	41.369400024	-77.559402466		miligrams per liter
	ShaleNetworkODM	PA DEP 26R035-21161	Aluminum, total	ShaleNetwor	ShaleNetwork:AL_fw	Aluminum		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day		41.194999695	-77.687698364		miligrams per liter
	ShaleNetworkODM	Baker Run near Glen	Alkalinity, bicarbo	ShaleNetwor	ShaleNetwork:Alk_CHO3	. Alkalinity		2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day		41.24565506	-77.608161926		miligrams per liter
	ShaleNetworkODM	Baker Run near Glen	Alkalinity, carbonate	ShaleNetwor	ShaleNetwork:Alk_CO3	Alkalinity		2 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Surface Water	day	1	41.24565506	-77.608161926		milligrams per liter
	ShaleNetworkODM	PA DEP 26R035-21156	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk_fw	Alkalinity		1 2009-11-18 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	1	41.369400024	-77.559402466		miligrams per liter
	ShaleNetworkODM	PA DEP 26R035-21161	Alkalinity, total	ShaleNetwor	ShaleNetwork:Alk_fw	Alkalinity		1 2009-11-20 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Sample	Flowback Wa	day	1	41.194999695	-77.687698364		miligrams per liter
	ShaleNetworkODM	Baker Run near Glen	Gross alpha radion	ShaleNetwor	ShaleNetwork:Alpha_F_p	Alpha radi		1 2011-07-26 00:00	2013-05-15 00:00	http://hydroport	ShaleNetworkODM	Sporadic	Field Observation	Surface Water	day		41.24565506	-77.608161926		picocuries per liter

NWIS data that starts with two letters (HU, CE, LY for example) and followed by three numbers are observation wells. The two letters are the first two letters of the county. Do not choose these data lines.

Let's compare Br values county by vells cvrs county

ARMSTRONG 145 1 BFAVFR 23 ٠ BEDFORD 1 BLAIR 6 BRADFORD 1107 174 BUTLER CAMBRIA 5 CAMERON 14 CENTRE 63 29 CLARION 1 CLEARFIELD 149 CLINTON 84 COLUMBIA 2 CRAWFORD 2 59 ELK FRIF 1 231 FAYFTTF 1 FOREST 18 517 GREENE HUNTINGDON 1 INDIANA 42 1 40 **JEFFERSON** LACKAWANNA 1 • LANCASTER 0 1 19 1 LAWRENCE 659 3 I YCOMING 2 MCKEAN 59 3 MERCER POTTER 65 SOMERSET 20 SULLIVAN 68 SUSQUEHANNA 642 1 TIOGA 808 1 VENANGO 4 WARREN 4 WASHINGTON 725 5 WAYNE WESTMORELAND 228 1 WYOMING 110 6155

ALLEGHENY

- Please take some notes about the range of highest values you see for Bromide in SURFACE WATER for your county. We will compare the high values by writing them on the board for each county.
- Units are different for different Data Services. We will compare everything in parts per million -- written as ppm (= mg/L= μg/mL). If data is presented as μg/L, divide it by 1000 to report it in ppm.
- Rather look at data in Excel? From Table Tab, Choose Export
 → Select a Delimiter (Tab) → Specify Output File (Browse → Desktop → any name for a file you want)
- Most natural PA samples are in range of 0.01 mg/L and lower. Most analytical labs only can detect to 0.2-0.6 mg/L. EPA recommendation is 6 mg/L but there is no MCL. If you see much higher values, are you sure it is Surface water? What is it? Censored data means that the measured value was less than detection
- Do we see higher Br concentrations in counties with wells or with counties with Commercial Water Treatment (CWT) plants that are permitted to discharge waste from conventional Oil and Gas wells?

Let's now do the same thing for Ba...first get rid of Br data

- Go back to Search tab
- Under Legend/Map Layers/Shale Network..right click on Shale Network and choose Remove layers. Wait until layer is gone. If symbols remain on map, zoom in and then zoom out and the symbols should disappear.
- Under Table tab, click the Check button (to check all downloaded time series) and select Delete. Or delete them one at a time.
- If things get messed up (glitch), you may have to close down HydroDesktop and start it up again

4. Click Run Search

Explore Barium data

- Right click on each Data service in Legend and choose "Show Attribute Table"
- In Attribute Table depress Control key and click on metadata lines that are surface waters (for Shale Network you might go to Sample Medium and type in Surface water in field at the top; for NWIS data avoid boreholes and anything like CE 242, HU 333, etc.; get all EPA data)
- After highlighting data for a Data Service, click Download Selected...you have to download data separately for each Data Service layer
- Explore data in Table tab
- Units are different for different Data Services. We will compare everything in parts per million -- written as ppm (= mg/L= μg/mL). If data is presented as μg/L, divide it by 1000 to report it in ppm.
- Maximum contaminant level (MCL) for Ba is 2 mg/L (ppm).
- What is the range of Ba in your county?

Olmstead et al., 2013

Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water guality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl⁻) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl⁻ concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl⁻ concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water guality as the scale of this economically important activity increases.

Example 2. Let's look at one analyte in one river

First get rid of Br data for your chosen county

- Go back to Search tab
- Under Legend/Map Layers/Shale
 Network..right click on Shale Network and choose Remove layers (sometimes it is slow)
- Under Table tab, click the Check button and then Delete to delete the downloaded time series.

De-select the county you had been looking at

- Go to Search tab
- Choose Clear Selection
- Zoom to southwest PA (or wherever you want to look)
- Change base map to ESRI Hydro Base Map (unclick other layers and change opacity as necessary)
- Under map choose Draw Rectangle and draw rectangle around a small part of southwest PA, focussing on one river...set Bromide (or analyte of choice), Streamflow and pull data. You may want to limit to data since 2005
- You can also search using the **Delineate Watershed** Tool from the Map ribbon. This tool will delineate a watershed polygon for any point you choose, which you can then select using **Select Features** from the **Search Ribbon** to define your search area as you would any other layer in HydroDesktop

For example...you could explore upper Conemaugh River (contains Blacklick Creek)

Waterways impacted by larger spills

2008 to 2011, spills > 400 gallons

- Pine creek (Lycoming, Airfoam)
- Stevens creek (Susquehanna, flowback)
- Brush run (Washington, flowback)
- Little Laurel creek (Clearfield, flowback)
- Dunkle creek (Hopewell, frack fluid)
- Towanda creek (flowback)
- Ten mile creek tributary (Washington, mud)

Sept 2012-March 2013 (all < 400 gallons)

- Harts Run (Sullivan, bentonite)
- Jacobs creek (Westmoreland, drilling mud)
- Mill creek (Sullivan, sediment)
- Black Water run (Sullivan, turbid discharge)
- Slack run tributary (Lycoming, sediment)
- Blacklick creek (Indiana, bentonite)
- Muncy creek (Lycoming, sediment)
- Thorn creek (Butler, drilling fluids)
- Wellmans creek, Salt Lick creek (Sullivan, discharge)
- Brion creek (Lycoming, hydrostatic test water and sediment)
- Big Bottom run (Sullivan, sediment)
| | wells | CWTs |
|--------------|-------|------|
| ALLEGHENY | 22 | |
| ARMSTRONG | 145 | 1 |
| BEAVER | 23 | |
| BEDFORD | 1 | |
| BLAIR | 6 | |
| BRADFORD | 1107 | |
| BUTLER | 174 | |
| CAMBRIA | 5 | |
| CAMERON | 14 | |
| CENTRE | 63 | |
| CLARION | 29 | 1 |
| CLEARFIELD | 149 | |
| CLINTON | 84 | |
| COLUMBIA | 2 | |
| CRAWFORD | 2 | |
| ELK | 59 | |
| ERIE | 1 | |
| FAYETTE | 231 | 1 |
| FOREST | 18 | |
| GREENE | 517 | |
| HUNTINGDON | 1 | |
| INDIANA | 42 | 1 |
| JEFFERSON | 40 | |
| LACKAWANNA | 1 | |
| LANCASTER | 0 | 1 |
| LAWRENCE | 19 | 1 |
| LYCOMING | 659 | 3 |
| MCKEAN | 59 | 2 |
| MERCER | 3 | |
| POTTER | 65 | |
| SOMERSET | 20 | |
| SULLIVAN | 68 | |
| SUSQUEHANNA | 642 | 1 |
| TIOGA | 808 | 1 |
| VENANGO | 4 | |
| WARREN | 4 | |
| WASHINGTON | 725 | |
| WAYNE | 5 | |
| | | |
| WESTMORELAND | 228 | 1 |
| WYOMING | 110 | |
| | 6155 | |

Wells in each county, CWTs in each county

Find bromide data and discharge data for points on the river

- Use the attribute table to distinguish/browse for each variable. If you highlight a time series in the attribute table, the corresponding site will be highlighted on the map.
- Hover your cursor over the Data sites on the map and find a site that has observations for both variables or 2 sites measuring one variable each to download data
- Explore data in Table and Graph tabs

Select the **Table tab** in the ribbon to view the data in tabular format.

Remember to click the 😂 CUAHSI HydroDesktop * Parallel Table Map Search Geostatistical Tod Graph Edit HydroR HydroModeler Help 9 Make option if C:\Users\Maggie\AppData\Local\Temp\HydroDesktop\WewP... Refresh Delete Add Export Manage Change Sequence Data Export Metadata Table Current Database Path Options you want sure time series ųΧ First 1 of 24 Next Last Prev to see the Refresh Check All Display options ValueID LocalDateTime UTCOffset CensorCode SeriesID DataValue Selection Tool you ALL Simple Filter Complex Filter data with 212.83 1 3/25/2011 4:15 PM -5 nc check 3/25/2011 4:30 PM 1 212.16 -5 nc units 1 211.55 3/25/2011 4:45 PM -5 nc 1 211.99 3/25/2011 5:00 PM -5 nc the 1 211.96 3/25/2011 5:15 PM -5 nc 1 211.06 3/25/2011 5:30 PM -5 nc 1 211.31 3/25/2011 5:45 PM -5 nc series 210.57 3/25/2011 6:00 PM -5 9 1 nc 10 1 210.65 3/25/2011 6:15 PM -5 nc 11 1 210.43 3/25/2011 6:30 PM -5 nc box 12 210.75 3/25/2011 6:45 PM -5 1 nc 13 1 210.59 3/25/2011 7:00 PM -5 nc 3/25/2011 7:15 PM 14 1 210.04 -5 nc 15 1 210.44 3/25/2011 7:30 PM -5 nc 16 1 210.41 3/25/2011 7:45 PM -5 nc 17 1 210.38 3/25/2011 8:00 PM -5 nc 18 1 210.33 3/25/2011 8:15 PM -5 nc 19 1 209.82 3/25/2011 8:30 PM -5 nc 20 1 209.79 3/25/2011 8:45 PM -5 nc 21 209.31 3/25/2011 9:00 PM 1 -5 nc 22 208.83 3/25/2011 9:15 PM -5 1 nc Map Table Graph Edit HydroR HydroModeler E Legend 🔯 time series Ready.

- ×

Advanced Topics

Advanced topic: Show the gas wells on top of the sample sites

Upload the shape file for wells

- Hover over a site with ShaleNetwork data
- Click on ShaleNetwork in pop up window...this takes you to <u>www.cuahsi.org</u>
- Click on ShaleNetwork...this takes you to <u>www.shalenetwork.org</u>
- Click on Databases then Hydrodesktop. At this site there is a version of HydroDesktop with the well shape file
- You can either run this version of HydroDesktop or extract the shape file and add it to your current version of HydroDesktop by choosing Add layer under Map tab

Jon Pollak and Dan Ames are building a customized HD for Shale Network

- The Shale Data Search tool (for searching "any/or" of specific keywords like discharge, bromide, strontium, etc.)
- Buttons added for links to: shalenetwork.org and shalenetwork.org/contact
- Measuring tool for both distance and area
- Shape files for maps of wells, mines, CWTs, NOVs

Searching for data, using and/or

Measuring lengths or areas

Lunch is at 12 30 back at Atherton Hotel

See you back there!