
Application of AMD for produced water reuse can facilitate byproduct recovery and permanent NORM sequestration

Tieyuan Zhang, Can He, Radisav D. Vidic

Department of Civil and Environmental Engineering University of Pittsburgh, Pittsburgh, PA 15261

Why AMD?

civil and environmental engineering

Technical aspects of AMD use

Water source

- Fresh water (withdrawal costs)
- Treated AMD = \$0.09 0.76 /1000 gal
- Municipal water = \$8 14.5 /1000 gal

Transport

- Same for any water source
- Trucks cost \$1 /bbl/hr

Storage

- Impoundment (single or double liner)
- Centralized tank farms

AMD can be economical if used locally

AMD selection criteria

Accessibility

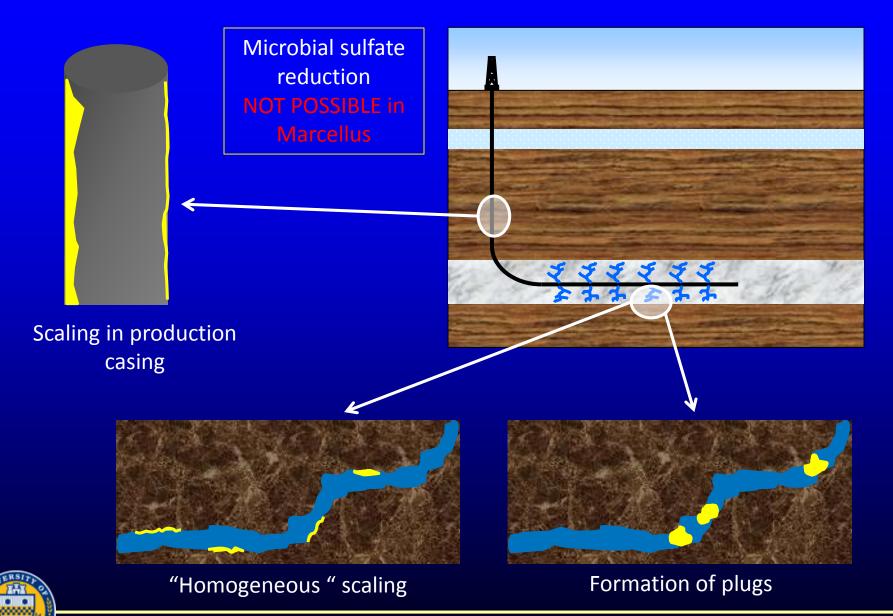
- Proximity to wells

Quantity

- Sufficient flowrate to support hydraulic fracturing needs in the

area

- Reliable source, no depletion during the summer


Quality

- Circumneutral pH
- Iron
- Sulfate

Wide range of industry standards. AMD use will depend on water source, well site and industry preference/tolerance.

SO A

Sulfate precipitation downhole

Sulfate precipitation downhole

Calculations performed using:

- Fracturing fluid volume = 3 million gal
- 9%_w proppant
- Proppant density = 1201 kg/m³

SO ₄ (mg/L)	BaSO ₄ volume (m ³)	Volume percentage compared with proppant
200	0.98	0.1%
800	4.9	0.5%
2000	9.8	1.3%

Negligible volume compared with the volume of proppant injected

Co-treatment of flowback water and AMD

Barium, Strontium, Calcium

Sulfate

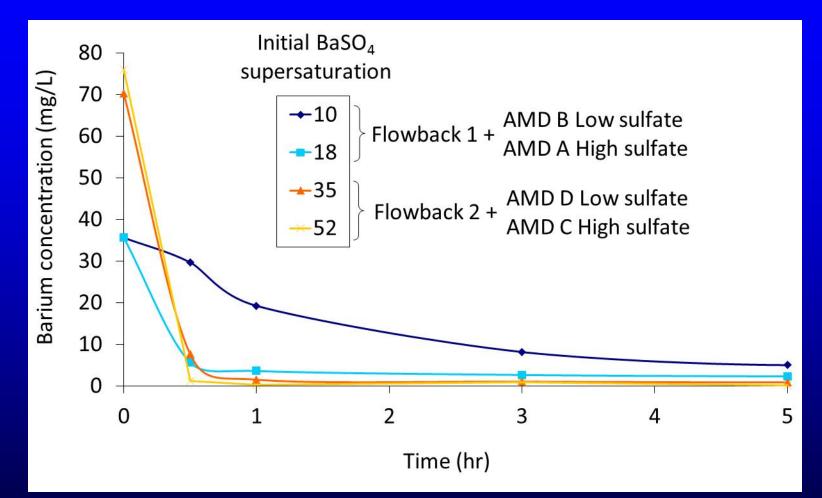
Hydraulic fracturing

Enables the reuse of flowback water for hydraulic fracturing with limited treatment => decreases the treatment and transport cost of flowback water

AMD and flowback water chemistry

AMD

Flowback

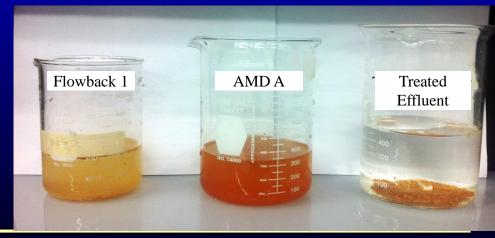

	Site A	Site B	Site C	Site D		FB 1	FB 2
рН	5.7	7.03	6.14	7.56	Cl	104,300	29,000
Alkalinity	62	394	40.5	47.5	Na	38,370	11,860
(mg/L as CaCO ₃)					Са	15,021	2,224
SO ₄	696	242.5	709	328	Mg	1,720	249
Fe	27	0	32.1	0	Sr	1,800	367
TDS	-	1574	1328	1127	Ва	236	781

Mixing ratio based on flowback water recovery

FB 1 15% + AMD A or B 85% FB 2 10% + AMD C or D 90%

Barium removal

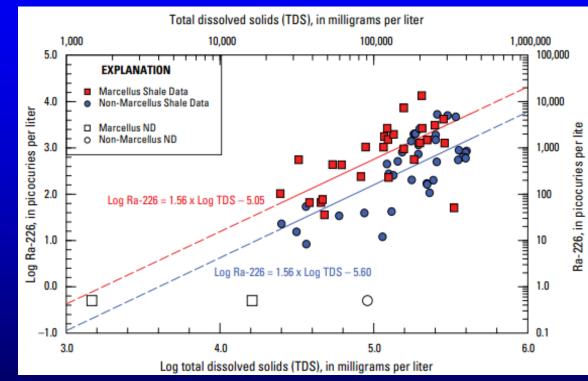
Fast and total barium removal for supersaturation above 30



Adjusting the Mixing Ratio to Achieve Desired Effluent Sulfate Limit

Mixture Compon		mponents	Initial Concentration (mg/L)		Final Sulfate Conc. (mg/L)		
Flowback Water	AMD	Flowback Water (%)	AMD (%)	Sulfate	Ва	Measured	Predicted
1	А	20	80	560	47	530	534
<u> </u>	A	70	30	219	165	128	120
1		30	70	174	71	140	129
±	В	40	60	151	94	102	92
2	с	35	65	467	434	155	145
2 C	40	60	433	496	85	84	
	20	80	251	233	120	88	
2	D	25	75	236	291	63	34

Optimum coagulant dose: Optimum pH: Flocculation time: Settling time:


20 mg/L 6.0 30 min 30 min

Radium in flowback water

- Ra-226 activity in produced water is distinctly higher in Marcellus than in other Appalachian Basin formations;
- Ra-226 is directly related with TDS in both flowback and produced waters;

Activity of Ra226 in relation to log total dissolved solids for Marcellus Shale (Red) and non-Marcellus Shale (Blue) data.

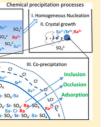
Rowan, USGS, 2011.

Ra removal during sulfate precipitation

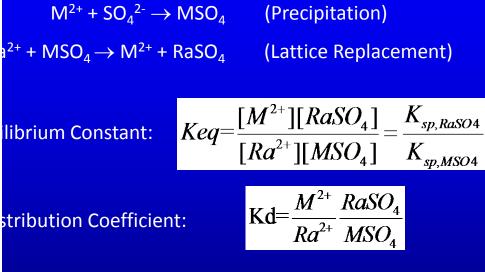
pubs.acs.org/est

Article

Co-precipitation of Radium with Barium and Strontium Sulfate and Its Impact on the Fate of Radium during Treatment of Produced Water from Unconventional Gas Extraction


Tieyuan Zhang,^{†,‡} Kelvin Gregory,^{§,‡} Richard W. Hammack,[‡] and Radisav D. Vidic^{*,†,‡}

[†]Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States [‡]National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania 15236, United States

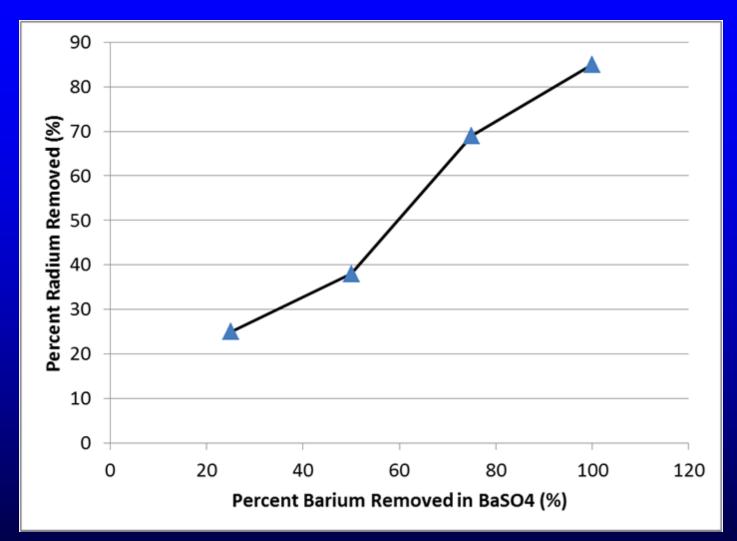

[§]Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States

Supporting Information

ABSTRACT: Radium occurs in flowback and produced waters from hydraulic fracturing for unconventional gas extraction along with high concentrations of barium and strontium and elevated salinity. Radium is often removed from this wastewater by co-precipitation with barium or other alkaline earth metals. The distribution equation for Ra in the precipitate is derived from the equilibrium of the lattice replacement reaction (inclusion) between the Ra²⁺ ion and the carrier ions (e.g., Ba²⁺ and Sr²⁺) in aqueous and solid phases and is often applied to describe the fate of radium in these systems. Although the theoretical distribution coefficient for Ra $-SrSO_4$ (K₄ = 1.54), previous studies have focused on Ra-BaSO₄ equilibrium. This study evaluates the equilibria and kinetics of co-precipitation reactions in Ra–Ba–SO₄ and Ra–Sr–SO₄ binary systems and the Ra–Ba–Sr–SO₄ ternary system under varying ionic strength (IS) conditions that re representative of brines generally follows the theoretical distribution law in binary systems and is enhanced in the Ra–Ba–SO₄ system and

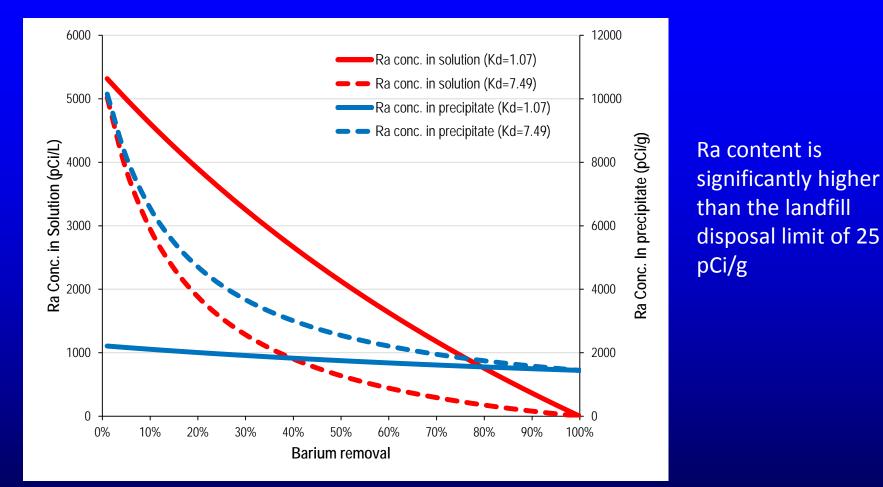
restrained in the Ra–Sr–SO₄ system by high IS. However, the experimental distribution coefficient (K_d') varies widely and cannot be accurately described by the distribution equation, which depends on IS, kinetics of carrier precipitation and does not account for radium removal by adsorption. Radium removal in the ternary system is controlled by the co-precipitation of Ra– Ba–SO₄, which is attributed to the rapid BaSO₄ nucleation rate and closer ionic radii of Ra²⁺ with Ba²⁺ than with Sr²⁺. Carrier (i.e., barite) recycling during water treatment was shown to be effective in enhancing radium removal even after co-precipitation was completed. Calculations based on experimental results show that Ra levels in the precipitate generated in centralized waste treatment facilities far exceed regulatory limits for disposal in municipal sanitary landfills and require careful monitoring of allowed source term loading (ASTL) for technically enhanced naturally occurring materials (TENORM) in these landfills. Several alternatives for sustainable management of TENORM are discussed.

Then,


$$\mathrm{Kd} = \frac{K_{sp,RaSO4}}{K_{sp,MSO4}} \frac{\Upsilon_{Ra^{2+}}}{\Upsilon_{M^{2+}}} \frac{\Upsilon_{MSO4}}{\Upsilon_{RaSO4}}$$

For Ra-BaSO₄ co-precipitation, Kd=1.54.

Experimental results show Kd ranging from 1.07 - 7.49.


Radium removal during precipitation

Radium is incorporated into BaSO₄ by coprecipitation / adsorption

Ra in solid waste generated by CWT facility

Theoretical calculation of Radium concentration in solution and solid waste generated by sulfate precipitation

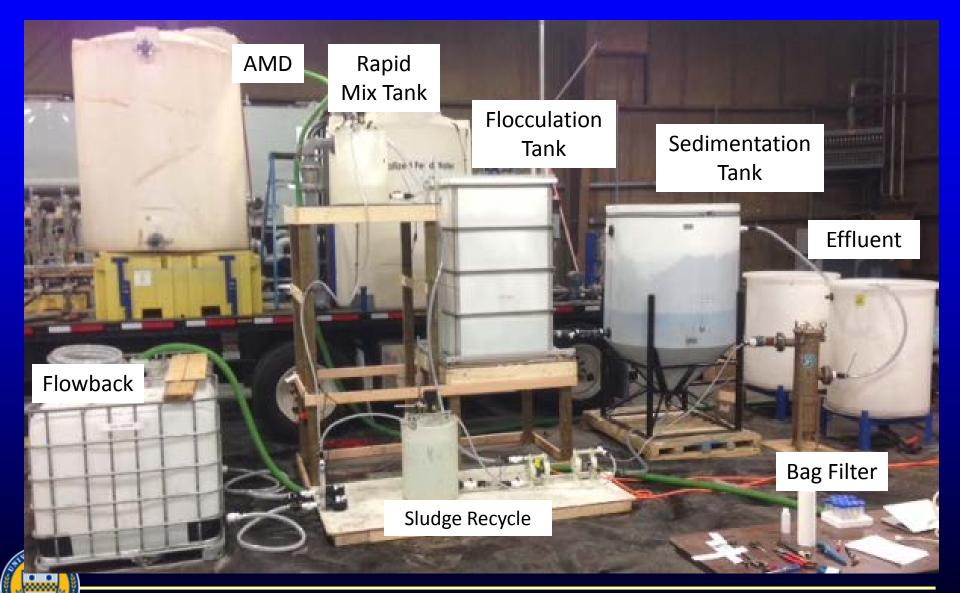
 $[Ra^{2+}]_0 = 5,400 \text{ pCi/L}, [Ba^{2+}]_0 = 2,200 \text{ mg/L}.$

Reuse of Solid Waste

Recovery of BaSO₄

 Recovery of almost pure barite from the sedimentation tank

Ra-226 is incorporated into BaSO₄ by coprecipitation/adsorption

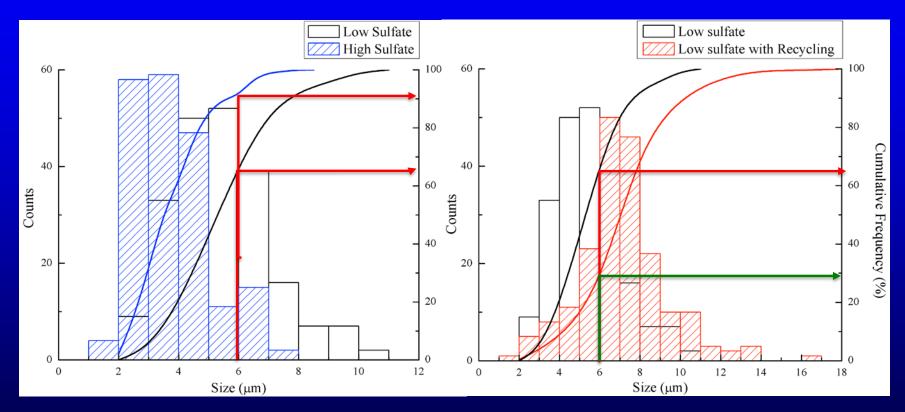

Reuse of BaSO₄

 Must meet the API standards for drilling mud formulation

Requirement for barite reuse	Standard		
Density	> 4.1 g/cm ³		
Water-soluble alkaline earth metals (as Ca)	< 250 mg/kg		
Residue larger than 75 µm	< 3.0%		
Particles smaller than 6 µm	< 30%		

Pilot Scale Test in NE PA

AND	Flowback	


Effluent

Parameter	Value		
рН	7.4		
Turbidity (NTU)	< 3		
Fe _{dissolved} (mg/L)	0.1		
Ra-226 (pCi/L)	< 60		
SO ₄ ²⁻ (mg/L)	75		

Influent				
Parameter	FB	AMD		
рН	6.2	2.6		
TDS (mg/L)	260,000	1,200		
Ba²+ (mg/L)	19,100	-		
Sr ²⁺ (mg/L)	16,200	-		
Fe _{dissolved} (mg/L)	28.2	35.6		
Ra-226 (pCi/L)	15,600	-		
SO ₄ ²⁻ (mg/L)	-	1,150		

Controlling the Growth of Particles

Impact of Sulfate Concentration

Impact of Sludge Recirculation

Thank You for Your Attention

Questions?

