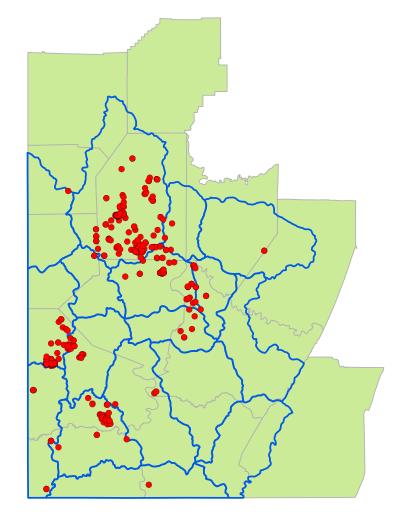
Assessing Well Water Quality in Southwestern Pennsylvania


John F. Stolz

Duquesne University

Add ago and

Well Water Survey in the Southwestern Pennsylvania Basin

<u>County</u>	# of Samples
Butler	289
Washington	257
Allegheny	65
Westmoreland	42
Beaver	12
Greene	11
Fayette	7
Lawrence	4
Armstrong	2
Jefferson	1

Water Quality Samples Watersheds of Interest Pennsylvania Counties selection
0 5 10 20 30 40
Miles

L. Manley

The survey questionnaire consisted of six questions

Do you have well water and where is your well located?

What kind of well is it (e.g. artesian, rotary, cable tool)?

Do you know how deep the well is and have you noticed a change in your well depth?

Have you noticed any change in water quality (taste, smell, color) and if so when?

Have you noticed any change in the water flow or quantity?

Have you had the water tested and would you be willing to share those results?

Water Analyses:

Taps preflushed

Sterile 1 L French square bottles

Sterile 60 ml French square bottles with nitric acid

YSI – on site temperature, DO, pH, specific conductivity

IC – Bromide, Chloride, Fluoride, Phosphate, Nitrate, Nitrite, Sulfate (Arsenate, Arsenite)

ICP-MS – EPA 200.8

(ICP-OES – EPA 200.8)

(YSI Multi-meter) Temperature Dissolved Oxygen pH Pressure Specific Conductance Conductance Total Dissolved Solids *calculated from SpC

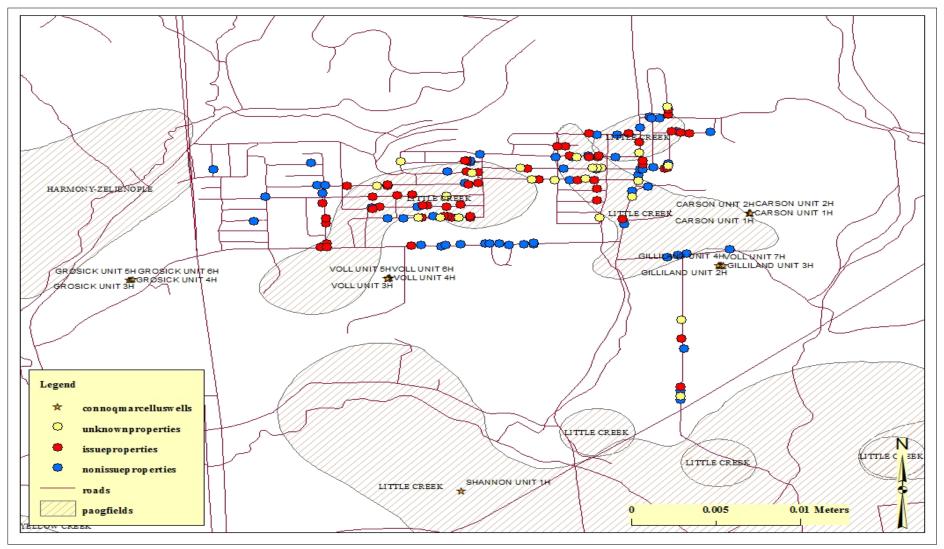
Field Analysis

Anions (Ion Chromatography) Fluoride Chloride Nitrite Bromide Nitrate Phoshphate Sulfate

VOC Analysis (VaporTech Inc.) Methane Ethane Ethene Propane Propylene Butane

The Set Up For Field Analysis: YSI, GPS, Cooler, Vials

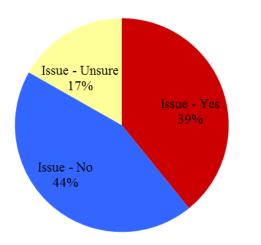
Lithium (Li) Boron (B) Sodium (Na) Magnesium (Mg) Aluminum (Al) Silicon (Si) Phosphorus (P) Potassium (K) Calcium (Ca) Titanium (Ti) Vanadium (V) Chromium (Cr) Manganese (Mn) Iron (Fe) Cobalt (Co) Nickel (Ni) Copper (Cu) Zinc (Zn) Arsenic (As) Selenium (Se) Rubidium (Rb) Strontium (Sr) Molybdenum (Mo) Silver (Ag) Cadmium (Cd) Tin (Sn) Antimony (Sb) Barium (Ba) Tungsten (W) Lead (Pb)


Uranium (U)

Cations (ICP-MS – U.Pitt)

Mapping (GIS)

ArcGIS PA DEP File Review PASDA


Survey Results For Butler County Community

~500 abandoned wells (Lytle 1976), Conventional activity as late as 1985

Grey areas are gas fields

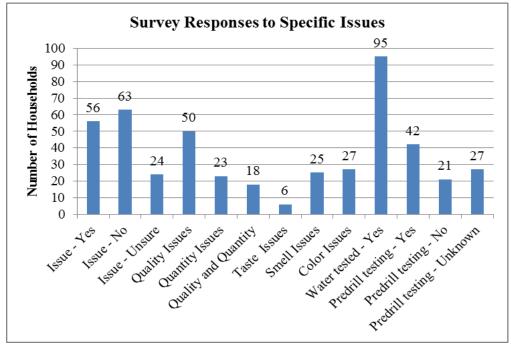
Households with Quality and/or Quantity Issues

143 households surveyed

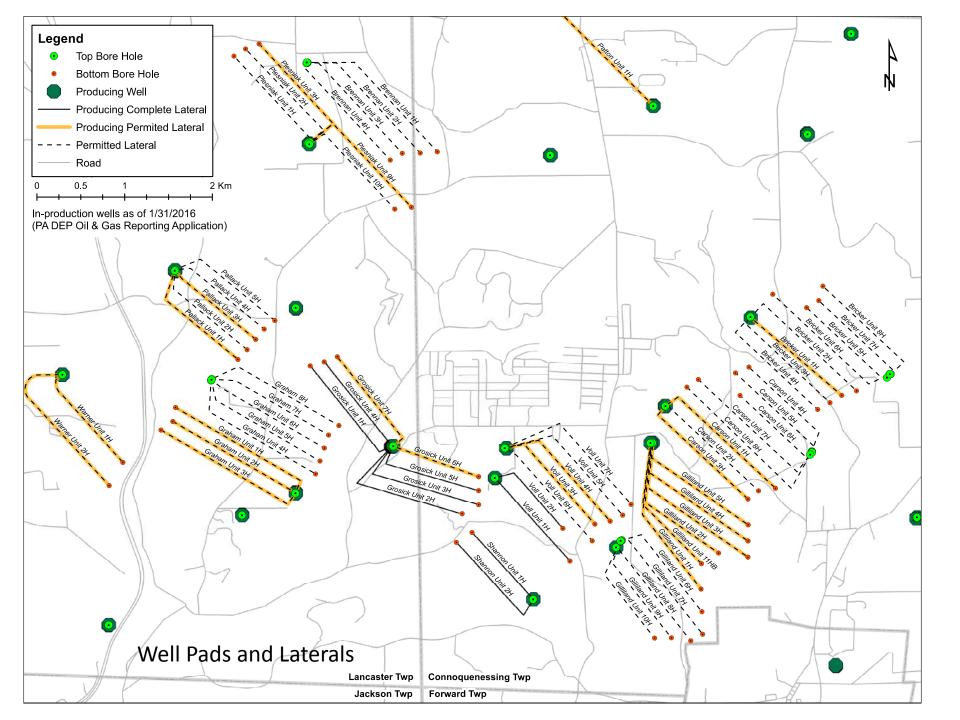
33 households sampled

57 samples analyzed

Findings:

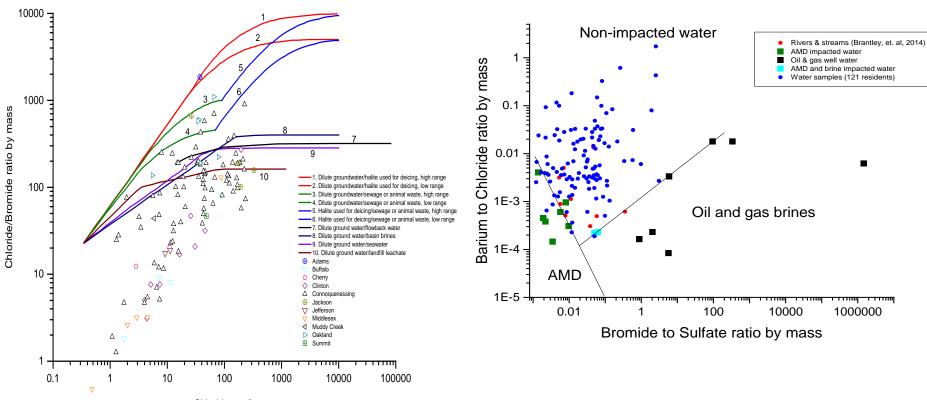

56 respondents indicated changes in water quality or quantity

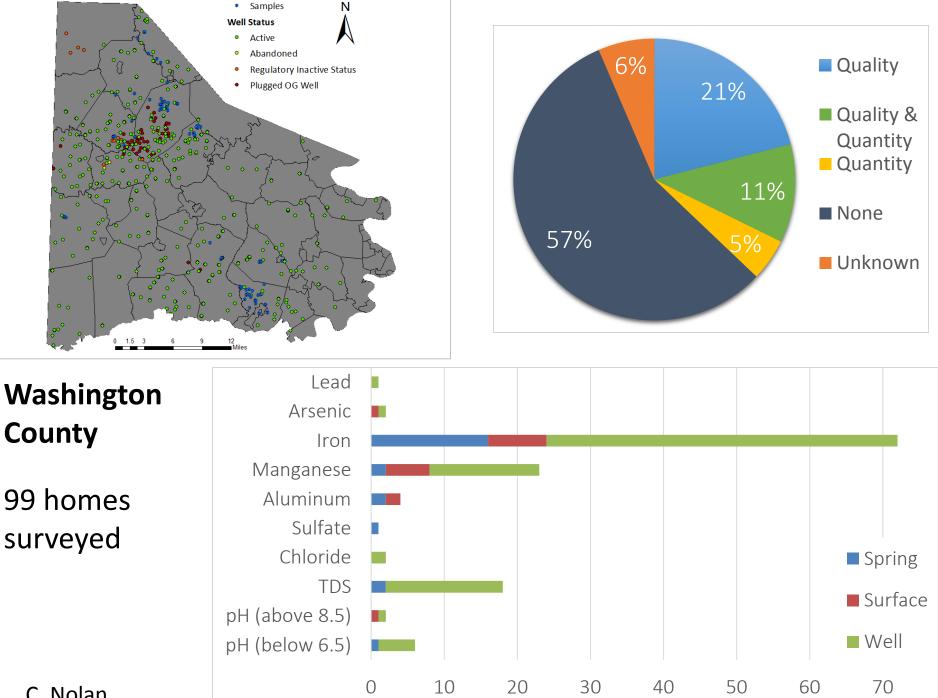
Color and smell most common


25 homes with Manganese above SMCL

Only 2 homes with total coliforms, 1 home with both TC and *E.coli*

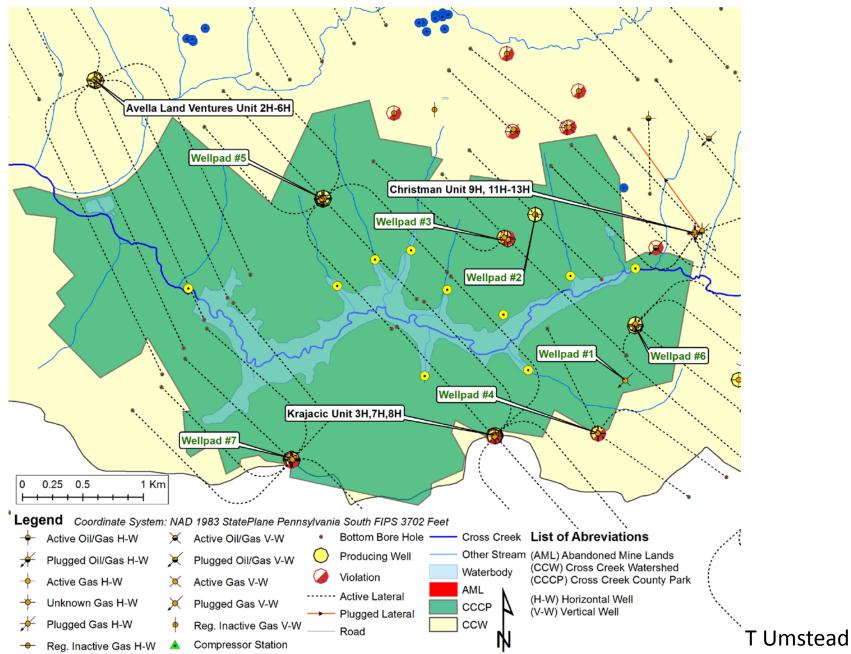
Contamination included Na, Ca, Mg, Sr, Ba, Cl, Br, Fe, Mn, and methane

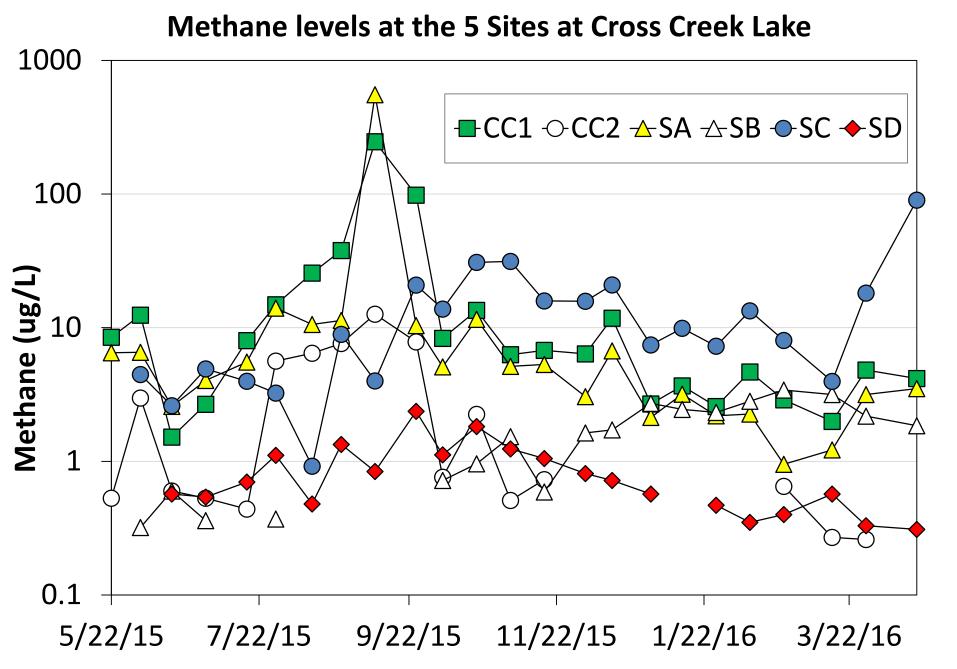

Alawattegama et al., 2015

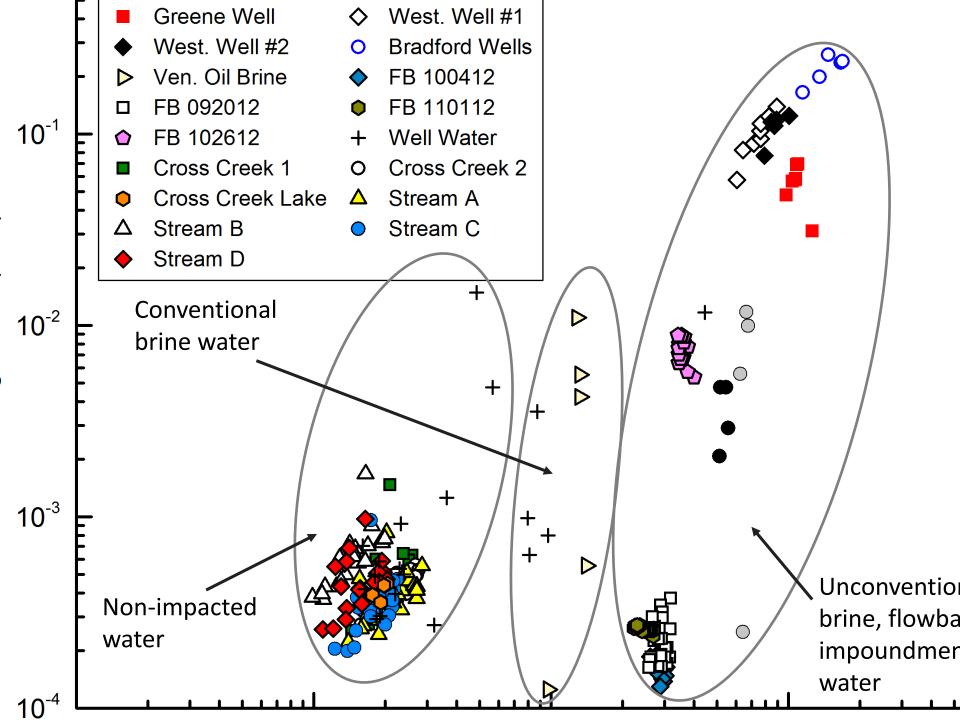

Conclusions from Butler Community Study

- 1. Survey indicate 56 out of 143 with issues
- 2. 25 homes with manganese in excess of SMCL
- 3. Light hydrocarbons in some wells (3 of 6 tested)
- 4. Well depths ranged from 60 900 ft
- 5. Extended monitoring of 2 wells ~670' apart but different depths are not "connected"
- 6. Legacy activities include shallow gas and oil wells, strip mining (AMD)
- 7. 12 pads and 34 laterals within 2 mile radius since 2009
- 8. Wells stimulated with 3-6.2 million gallons of fluids and 2-4 million tons of proppant
- 9. PA DEP file review show violations including failed casings Alawattegama et al., 2015

Combined Data Set for Butler County – 2012-15




Chloride, mg/L


C. Nolan

Cross Creek County Park – Washington County

T Umstead

Conductivity (µS/cm³), pH, and anion data (mg/L), for flowback, impoundment water, coal mine effluent, freshwater stream samples, conventional, and unconventional oil well brine.

	Flowback Water		Impoundment Water		Coal Mine Effluent		Freshwater Stream		
	FB 092012	FB 102612	FB 110112	IMP1	IMP2	MDG	WP	Fonner Run	Bates Fork
Spec. Cond.	15,270	8,380	5,200	102,860	61,480	6,400	3,250	387	476
рН	11.9	4.5	7.7	5.4	5.7	7.5	6.6	7.5	7.5
Fluoride	BDL	BDL	BDL	BDL	BDL	BDL	0.03	0.06	0.05
Chloride	68.5	4,541	242	30,700	27,700	1,240	545	1.3	6.00
Nitrite	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Bromide	20.5	31.5	6.5	255	226	14.25	0.05	BDL	BDL
Nitrate	BDL	BDL	BDL	BDL	BDL	1.8	0.4	0.1	0.5
Sulfate	460	11	531	8.6	10.2	3,830	350	25.1	24.5

	Conventional oil well brine					
-	KM6	KM10Q	KM14Q	KM41	KMWB6	
Specific Conductance	95,600	74,300	81,850	120,500	38,500	
pH (1:10)	6.5	6.6	6.9	6.7	6.8	
Fluoride	BDL	BDL	BDL	BDL	BDL	
Chloride	37,586	33,583	27,344	34,862	17,548	
Nitrite	BDL	BDL	BDL	BDL	BDL	
Bromide	744	543	363	575	178	
Nitrate	BDL	BDL	BDL	BDL	BDL	
Sulfate	84	BDL	BDL	BDL	195	

	Unconventional oil well brine					
	PW 092012	PW 100412	PW 102612	PW 110112		
Specific Conductance	97,763	95,292	183,385	110,857		
рН	6.9	6.6	6.6	6.7		
Fluoride	BDL	BDL	BDL	BDL		
Chloride	96,939	93,857	88,490	134,312		
Nitrite	BDL	BDL	BDL	BDL		
Bromide	439	183	927	329		
Nitrate	BDL	BDL	BDL	BDL		
Sulfate	568	7 9 1	3.3	692		

BDL - below detection limit

Biogas: methanogenesis from food waste, agriculture (beef cattle, dairy, chicken, swine), human.

2-8 Tcf annually from just cow and pig waste

Conclusions

- 1) Water quality in wells in Southwestern Pennsylvania were assessed using a home owner survey, water sample analyses (e.g., anions, cations, light weight hydrocarbons), PA DEP file reviews, and GIS mapping (including legacy activity).
- 1) Flowback and produced water from unconventional gas wells, produced water from conventional oil wells, coal mine effluent, and fresh water streams and lakes, were also collected and analyzed.
- 2) Results from the more than 750 well and surface water samples analyzed over the past five years indicate that there is high quality source water in Southwestern PA.
- 3) Iron and manganese, however, were the most common contaminants of concern.
- Cl⁻/Br⁻ to Cl and SO₄⁻²/Cl⁻ to Br⁻ molar ratio analyses in particular, were found to be quite informative as they revealed discernible differences between the different sources.
- 5) Current extractive activities (conventional and unconventional gas) can exacerbate legacy issues as well as present new challenges to drinking water sources.

Acknowledgements

Shyama Alawattegama Matthew Bricker Lucas Eastham Renee Krynock Linnea Manley* **Scott Mayes** Colleen Nolan* Daniel Robinson* Jennifer Rutter Tyler Umstead*

Tetiana Kondratyuk Dan Bain Partha Basu

Heinz Endowments Colcom Foundation Thermo Scientific

