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Treatment and Disposal Strategies

* Deep well injection
— Linked with seismic activities
— Viable as long as Class Il injection wells are available

* Reverse Osmosis
— Not feasible for wastewater with TDS> 40,000 mg/I

« Evaporation/Crystallization

— Above 90% water recovery
— High energy intensity and cost

* Recycling water for subsequent fracking

— TDS interferences with hydraulic fracturing chemicals (e.g., friction
reducers)

— Water hardness and bacteria are a concern
— Works only as long as we have new wells to fracture
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Total Water Balance Within a Gas Field
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Direct Contact Membrane Distillation (DCMD)

Porous hydrophobic

membrane

* Vapor pressure driven process

* Hydrophobic membranes

« Poresize—-0.2to 1 um

 Membranes material - PTFE, PVDF, PP, AC

* Permeate flux is proportional to vapor pressure difference
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Direct Contact Membrane Distillation (DCMD)

* Advantages
— Operates at low temperature (<100°C)
— Low quality heat energy can be used
— Ambient pressures
— Not highly affected by salinity
— Produces high guality water

« Disadvantages
— Conduction heat losses
— Energy consumption (up to 3.5 MWh/m3)?

LA. Criscuoli, M.C. Carnevale, E. Drioli, Evaluation of energy requirements in membrane distillation,
Chemical Engineering and Processing: Process Intensification, 47 (2008) 1098-1105

civil and environmental engineering



Experimental Setup

(a) Schematic diagram of experimental setup, (b) Picture of the DCMD module
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Membranes Properties
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Performance of different membranes

Membrane MD coefficient
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Flux (LMH) vs Vapor pressure difference (kPa)

Operating conditions:

* Feed and permeate velocity= 0.6 m/s
* Feed - pure water

* Permeate temperature=30°C

Flux unit — LMH (I/m?/hr)
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Produced water characterization

Component (mg/l) Site 1 Site 2
C 188,728 63,588
Na* 81,442 26,427
NH,* 1,002 279
786 258
Mg*? 2,664 675
C 32,901 6,523

A
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Sr+2 11,910 1,620

6,256 3,743
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Fe total
TDS 308,334 92,800
TOC 11

*Ra226 17,980+ 1,100 753 +60

||

* Ra 226 activity is shown in pCi/l
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DCMD - Constant concentration - Site 1
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_ « Constant concentration
» Constant flux over time . TDS = 308,334 mg/|
* Negligible scaling even at a high TDS « Feed temperature = 60 °C
 Permeate temperature = 30°C

 Feed and permeate velocity=0.6
m/s
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Permeate Quality

Average Flux
(LMH)

AC 2 99.9 10.5
PP 7 99.9 34.7

Membrane Cl (ppm) Rejection %

PTFE 1 0.5 99.9 32.5

PTFE 2 1 99.9 20.8
PTFE 3 2 99.9 37.5
PVDF 1 99.9 16.3
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DCMD - Concentrating produced water — Site 2
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 Feed was concentrated until TDS reached 30%

Permeate quality

PTFE 1 PTFE 3
Cl- (mg/l) 0.4 (99.9% rejection) 0.5 (99.9% rejection)

Ra 226 (pCi/l) ND
TOC (mg/l) 1 (90.9% rejection) 0.83 (92.4 % rejection)
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Scale Formed on DCMD Membrane

« Scaling is not uniform on membrane surface
« Scale is about 1 micron thick after 8 hours of filtration
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Testing of Used Membranes

Gas Permeation Test
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Pure water flux with the used membranes was equal to that with
pristine membranes
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Systems Level Analysis
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Stepwise Modelling

Mass Flux (J)

Membrane

1.
;. Permeate

(a) Temperature profile across the membrane (b) Small section of the membrane

Divide membrane into ‘n’ parts
Solve for each part sequentially
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Model Calibration and Validation
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Experimental  Simulation
Experimental ~ Simulation

Feed flow rate (I/min) Feed flow rate (I/min)

Flux vs flow rate at 50, 60 and 70 °C for (a) 93 g/l and (b) 308 g/l TDS produced water
solutions

« Model was calibrated at 60 °C and 1.9 I/min
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Optimizing System Performance
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(b) Energy required per m? of produced water vs
Feed Temperature

« Raising the feed temperature increases flux and heat recovery
* More energy is required at lower feed temperature
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Systems Level Flow-sheet

Temperature (°C)
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Process flow-sheet for water treatment using waste heat
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Natural Gas Compressor Stations

Source:US Energy Information
Administration
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Waste Heat Estimation

Natural Gas from
Pipeline System

Low Pressure
Natural Gas

High Pressure
Natural Gas Exhaust Gas

* Waste heat from natural gas compressor stations estimated to be
46 TJ/day in PA.
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Total of about 2.7 million m3 produced in six months (2014)
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How much produced water can be treated?

*  54% of waste heat
from NGCS is required
to concentrate
produced water in PA
to 30% salinity

 Practical constraints

Brine"production"on"a"county'level" Treatment'capacity’atNG"'CS"

— Water (m¥day) (m¥day)
] ® : 0100
transportation 0'%0.01" @  100'%200
— NGCS load factor 0.01'%500 O 200300

@ 300'#400

500"#1000 . 400"#500

1000"#2000

2000"#3500
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i+l = T'm,p

Determine py, ; and pp,

Calculate J by Eq. (1)

Calculate heat transfer
coefficients by Eqn. (8)

Calculate Ty,  and Ty, ;, by
Eq. (6) and (7)
Update:
Tri =Tfavg Determine p,'nv rand p:n.p
Tpiv1 = Tpavg Calculate ' by Eq. (1)

Determine @, ; by Eq. (3)

Determine Mg i1, Mp;, Efivq
and Ep; by Eq. (10), (11), (12)
and (13) respectively

Evaluate Ty ;4 and Tp,; from Ef ;14 and
Ep i respectively

Calculate:

TeitTr i1 TpitTyi
_ At fi+ _ ipi p,i+1
Tf,a-vg =—-—=— and Tp,avg -7

Tp,i+1 - Tp,aug < 10_3
Tp.i+l
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Simulation Results
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Permeate

Temperature and flux profiles for 12 modules in series

¢ Assuming 1 module has an area of 0.2 m?
*  Minimum temperature difference of 10 °C was selected
* 12 modules in series
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Scale Formeq on DCMD Membrane

SEI  15kV WD12Zmm  SS60 x3,500 S5um

_ Weight %
Location

* Iron fouling may
be a problem in
the long run

e Pretreatment
should be
considered
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