Continuous Water Quality Trends Adjusted for Seasonality and Streamflow in the Susquehanna River Basin

Dawn Hintz Graham Markowitz Shale Network Workshop May 19, 2017

Monitoring Network

- Initiated in 2010
 - Northern PA and southern NY
- 53 stations had 3+ years of continuous data by the end of 2015
- Parameters monitored: pH, temperature, specific conductance, dissolved oxygen, and turbidity

Area Containing Natural Gas Shales

Area with No Recoverable Natural Gas Formations

Recoverable Natural Gas Shales within the Susquehanna River Basin include the Marcellus, Burket, Utica/Antes, Geneseo, Mandata, Middlesex, Needmore, and Rhinestreet Formations.

PRIORITY WATERSHEDS

Station Installed

Sangerfield River	32. Little Muncy Creek		
Cherry Valley Creek	33. Marsh Creek		
Trout Brook	34. Trout Run		
Nanticoke Creek	35. Little Clearfield Creek		
Catatonk Creek	36. Chest Creek		
Sing Sing Creek	37. Bobs Creek		
Baldwin Creek	38. Upper Pine Creek		
Tuscarora Creek	39. Ninemile Run		
Choconut Creek	40. Marsh Creek		
Apalachin Creek	41. Pine Creek		
Wappasening Creek	42. Sugar Run		
Hammond Creek	43. Grays Run		
Starrucca Creek	44. Little Pine Creek		
Snake Creek	45. East Fork First Fork		
Tomjack Creek	Sinnemahoning Creek		
Sugar Creek	46. Portage Creek		
Crooked Creek	47. Driftwood Branch		
Lackawanna River	48. Hicks Run		
Meshoppen Creek	49. Baker Run		
Tioga River	50. Moose Creek		
Long Run	51. East Branch		
South Branch	Fishing Creek		
Tunkhannock Creek	52. Kettle Creek		
Little Mehoopany	53. Young Womans Creek		
Creek	54. Hunts Run		
West Branch	55. West Creek		
Pine Creek	56. West Branch		
Elk Run	Susquehanna River		
Loyalsock Creek	57. East Branch Wyalusing		
Blockhouse Creek	Creek		
Bowman Creek	58. Pleasant Stream		
Kitchen Creek	59. Sterling Run		
Larrys Creek	60. West Branch Owego		
	Creek		
Historical Station			
7. Canacadea Creek			

Trend Tests

- Determines if a series of observations generally increases or decreases over time
- Does not attribute trend to a particular cause
- If water quality is changing over time, is it due to:
 - Streamflow variability?
 - Seasonality?
 - External, anthropogenic factors?

Flow Normalized Trend Test Methods

- Locally Weighted Scatterplot Smoothing (LOWESS) algorithm
 - used to define relationship between water quality parameters and streamflows
- Residuals from LOWESS
 - show water quality parameters uninfluenced by streamflow

Flow Normalized Trend Test Methods

- Mann-Kendall (non-parametric) trend test performed on average, monthly residual values from LOWESS operation
 - excludes influences of seasonality

Streamflow Estimation

- Instantaneous streamflow data not available for 49 out of 53 RWQMN stations
- Used USGS Reference Gage information to estimate streamflow at RWQMN stations
- Considerations
 - Time step of analysis (hours, days, weeks, seasons, years)
 - Accuracy of estimation vs. cost of applying a more complex method

Select Methods

• Drainage Area Ratio

$$Q_{ungaged} = \frac{DA_{ungaged}}{DA_{gaged}} x Q_{gaged}$$

• Linear Regression (Correlation)

Considerations

- Average daily streamflow vs 15 minute timeseries
 - mitigates lag effect of rainfall and runoff between drainage areas (Hawkins and Simas, 2000)
- Real vs. log base 10 transformed data
 - mitigates scaling effects and the issues involving low (negative) flows (EPA, 2009)

Data Inputs

- 1216 independent discharges at partial record stations
- 6 sites were located at active USGS stations or records were made available
- 11 had less than 10 independent flow measures acquired in the field
- 30 independent USGS gages
 - Streamflow that was minimally altered by regulation, diversion, or mining
 - At least 10 years of continuous record
 - Identified via USGS Baseline Streamflow Estimator (BaSE) tool using map correlation techniques

Results

- With use of both methods, average correlation coefficient at 0.88
- 32 sites most correlated with DA Ratio method
- 17 sites most
 correlated using
 log-space regression
 equation

Limitations/Caveats

- Five years of monthly data required for monotonic trend (continuous rate of change, increasing or decreasing) analysis
- Two years of monthly data is required for step trend (abrupt shift up or down) analysis (Hirsch, 1988)
- Inaccuracies exist with predicting high flows

 affected by local temporal variations in the timing and duration of precipitation, infiltration, and runoff

Trend Test Results

- 57 individual parameters saw trends at 40 stations
- More specific conductance trends than other parameters

Parameter	Increasing	Decreasing	
Specific Conductance	24	1	
pH	1	9	
Dissolved Oxygen	8	2	
Temperature	3	2	
Turbidity	3	4	

Specific Conductance

- 24 sites showed increasing conductance trends
- Watershed characteristics were evaluated to determine if stations trending were significantly different from those not trending
- Characteristics included:
 - Drainage area
 - Well Density
 - Land Use (forested, urban, agriculture)
 - Geology

Watershed Characteristics

Watershed Characteristic	p-value	Range of stations with	Range of stations
		increasing trends	with no trends
Percent Agriculture Land Use	0.067	1% - 55%	0% - 51%
Percent Developed Land Use	0.144	0 - 9.6%	0-3.7%
Percent Forested Land Use	0.110	42% - 93%	35% - 99%
Drainage Area	0.553	$11 - 83 \text{ mi}^2$	$3 - 385 \text{ mi}^2$
Well Density	0.812	$0.0 - 3.86 \text{ wells/mi}^2$	$0.0 - 3.69 \text{ wells/mi}^2$
Fracked Well Density	0.416	$0.0 - 2.48 \text{ wells/mi}^2$	$0.0 - 3.04 \text{ wells/mi}^2$

Approved Wells and Conductance

- Is the increasing number of wells causing the increase in conductance?
 - Inconclusive:
 - 6 watersheds no wells
 - 3 watersheds no increase in # of wells
 - 15 watersheds increase in # of wells
 - Results for watersheds with no conductance trends are similar

Macroinvertebrate IBI scores at Stations with Increasing Conductance Values

IBI Score by Year

Susquehanna River Basin Commission

srbc.net

Conclusions

- Watershed characteristics (watershed size, land use, natural gas well density, etc.) for stations with increasing conductance were not statistically different from those at stations with no observable trends.
- Overtime, the increase in conductance did not correlate to the increase in fractured natural gas wells as increasing conductance trends were observed in watersheds experiencing both natural gas and non-gas related activities.
- IBI scores showed no significant changes to the aquatic biological community, as a function of increased conductance trends.

Next Steps

- Revisit water quality trends when 10 years of continuous data are available at each site
- Select a subset of stations with conductance trends to study further – watersheds with drilling and without drilling
- Continue to build on the streamflow estimation models

Questions

Dawn Hintz dhintz@srbc.net

Graham Markowitz gmarkowitz@srbc.net