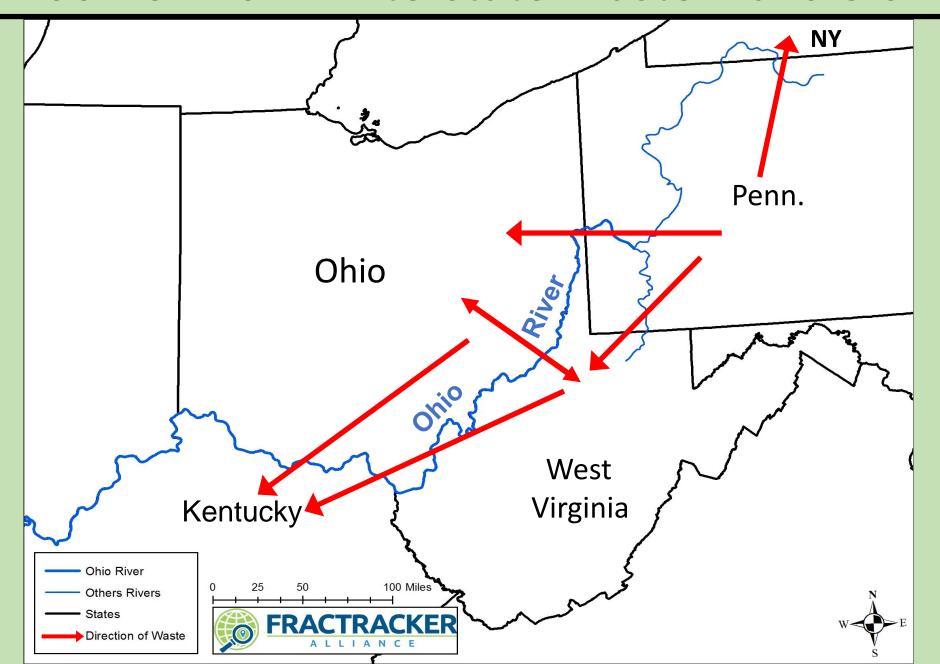
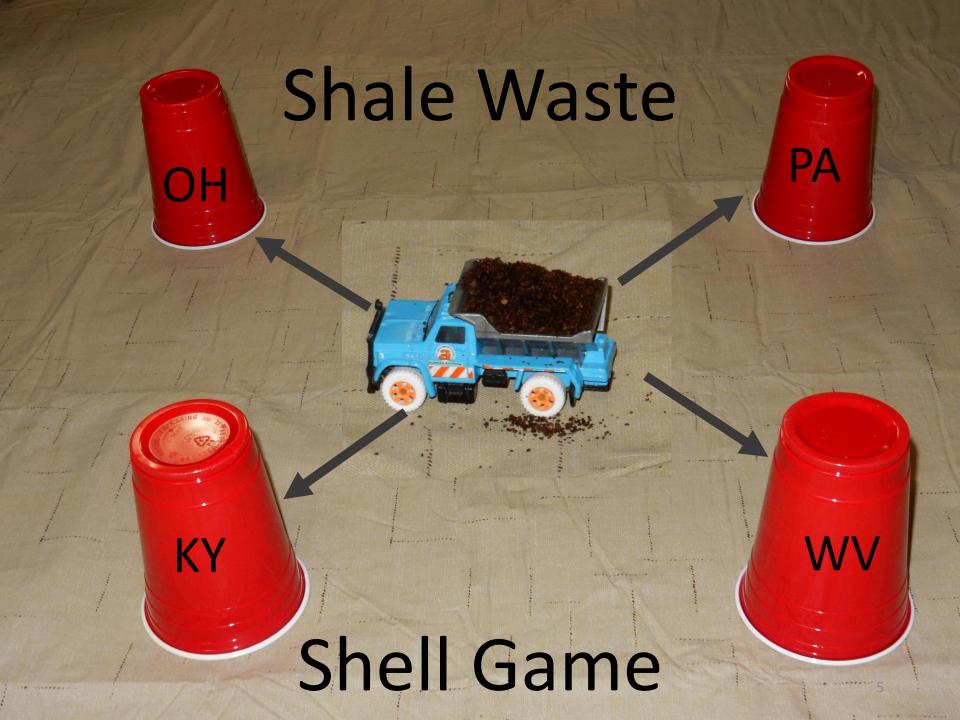
Penn State Shale Network 2017 Workshop

Black Shale Waste Disposal Concerns

By Bill Hughes

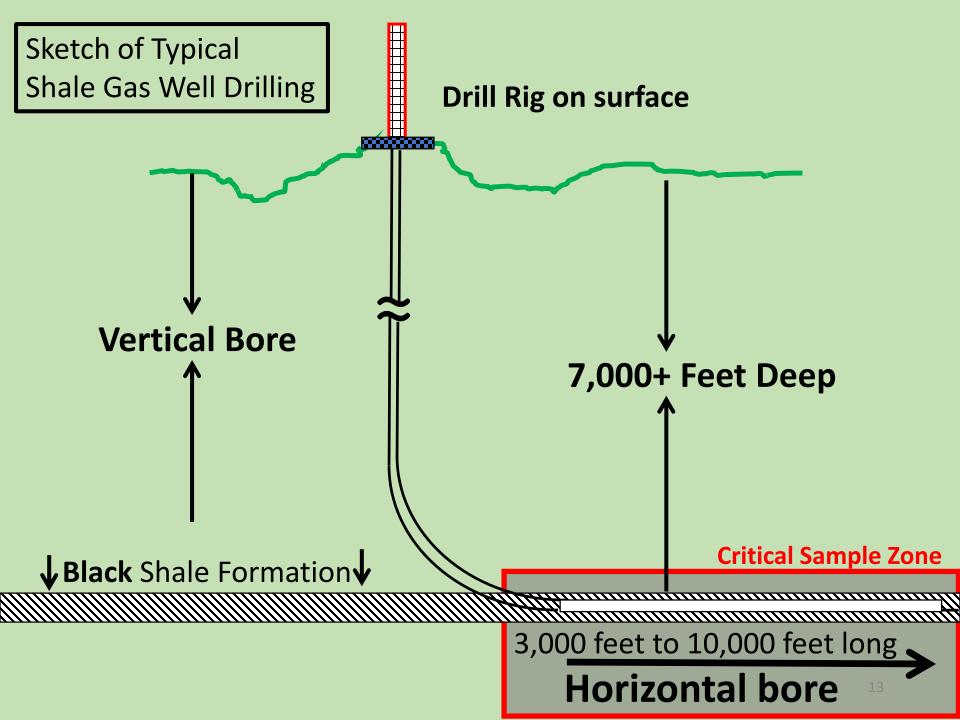

Wetzel County, WV

Developed with support from: FracTracker Alliance and Ohio Valley Environmental Coalition


Black Shale Waste Disposal Concerns

- 1. Minimal restrictions on interstate waste transfers
- 2. Consists of a variety of solid; liquid; semi-solids
- 3. Inconsistent or non-coordinated state regulations
- 4. Over all weak state regulations; minimal Federal oversight
- 5. Hazardous; toxic; threat to watershed—Ohio River
- 6. Inadequate waste characterization

Some Known Interstate Waste Transfers



Quick review of Shale Gas Drilling And **Drill Cuttings**

More Benign Drill Cuttings from the <u>Vertical</u> bore on a <u>Horizontal</u> Well Pad

Radioactive and Toxic Drill Cuttings From the Horizontal bore on a Horizontal Well Pad


Drill Cuttings on way to Landfill

Drill Cuttings being dumped at the Wetzel County Landfill

Rainfall or Drilling Fluids or Fracturing Fluids or Formation fluid

Fresh Water

Marcellus Shale
Drill Cuttings
Buried in Landfills

Coffee Grounds

Leachate

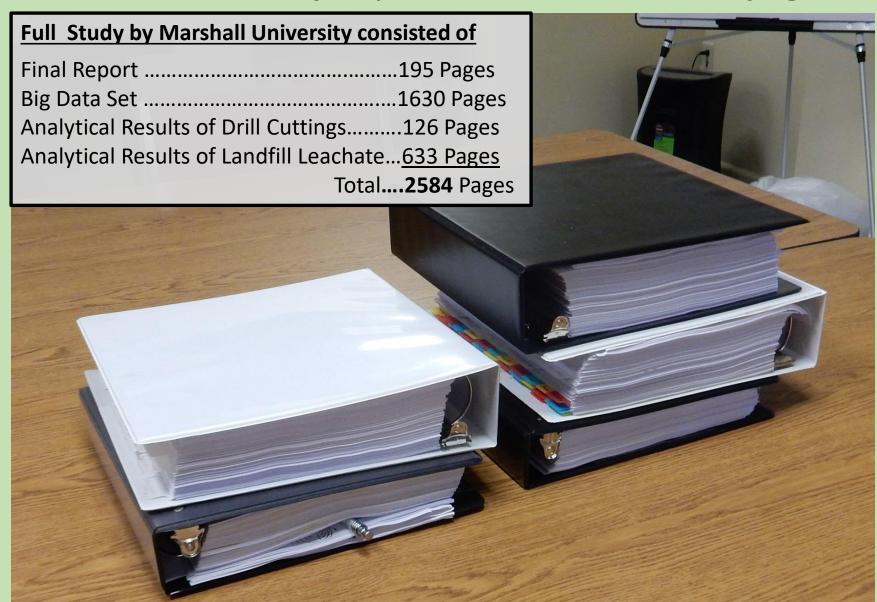
Fresh Coffee

OUR

Solid Waste

LANDFILLS

Your KITCHEN


18

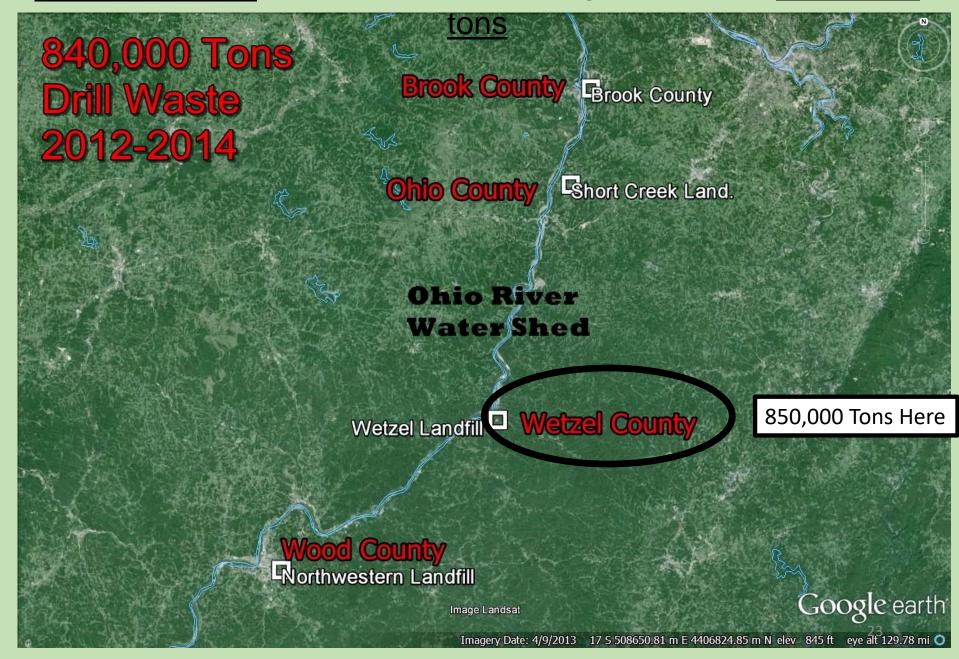
Marshall University was tasked by the WVDEP To Investigate Five Topics

We will only review part of the FIRST TWO

- 1. The hazardous characteristics of leachate in landfills accepting drill cuttings
- 2. The negative impacts of that liquid on surface and ground water

Marshall University Report Total over **2,500 pages**.

This Is What Marshall University was tasked to Examine


Marcellus Shale Operations Potential Water Contamination

- Well pad drill rig → Drill cuttings → Landfills
- 2. → Moisture drains out becomes → Leachate
- 3. Leachate shows radioactive levels of concern
- 4. Radioactivity cannot be filtered out →
- 5. Leachate goes to Water treatment plant ->
- Effluent from water treatment plant goes into Surface Streams and Rivers
- 7. Surface waters → water intake → Drinking water

Why is this Waste Critical?

Drill Cuttings Are Radioactive--Toxic---Hazardous And Lots of It

Total Tonnage of Drill Waste in West Virginia now over 1.5 million

What We Do Know

Marcellus Shale

Is

Radioactive

How do we know that Marcellus is Radioactive

- Geologists reports from over <u>35 years ago</u>
- WVDEP required landfills to test leachate
- Marshall University report confirms it 7-01-2015
- Drillers use gamma logs to identify it
- A few drill waste loads trip alarms at landfills

General Observations

Taken from the Marshall University Report

- Few existing studies on landfills with drill cuttings
- Little or no empirical data on risks with drill cuttings
- Studies of long-term exposure to unconventional natural gas development have not been conducted
- Landfill liners will leak

The Marshall University report states:

- 1. The **Marcellus Shale** has higher concentrations of **radioactivity** than other shales
- 2. Drill cuttings contain radioactive compounds.
- 3. The **Radium** isotopes within the Marcellus shale are **soluble in water**
- 4. Radioactive compounds are present in landfill leachate
- 5. Radium 226 has a half-life of 1600 years.
- 6. Landfill liners will leak

Conclusions From the Marshall University Report

- Drill Cuttings toxic to plants
- Leachate toxic to plants and invertebrates
- Radioactive compounds are in LEACHATE
- Long term studies have not been done

Marshall Report Flaws

- A. NO METHODS Discussion
 Section in the final report on the choice of Test Protocols used for radiologicals
- B. INACCURATE TEST Protocols were used for radiologicals

Test Methods for SOLID DRILL CUTTINGS

by Marshall

Well name Date of sample	Test method used for Gross Alpha	Test method used for Gross Beta	Test method used for Radium 226	Test method used for Radium 228
Sheep Run 4-17-15	EPA 9310	EPA 9310	901.1	901.1
Bierstadt 4-20-2015	EPA 9310	EPA 9310	901.1	901.1
McGee 1-28-2015	900.0	900.0	901.1	901.1
Morton 1-28-2015	900.0	900.0	901.1	901.1
Wentz 1-28-2015	900.0	900.0	901.1	901.1

EPA Method 9310

For the measurement of gross alpha and gross beta particle activities in <u>surface</u> and <u>ground</u> waters.

EPA Method 900.0

For Gross Alpha and Gross Beta in **Drinking Water**

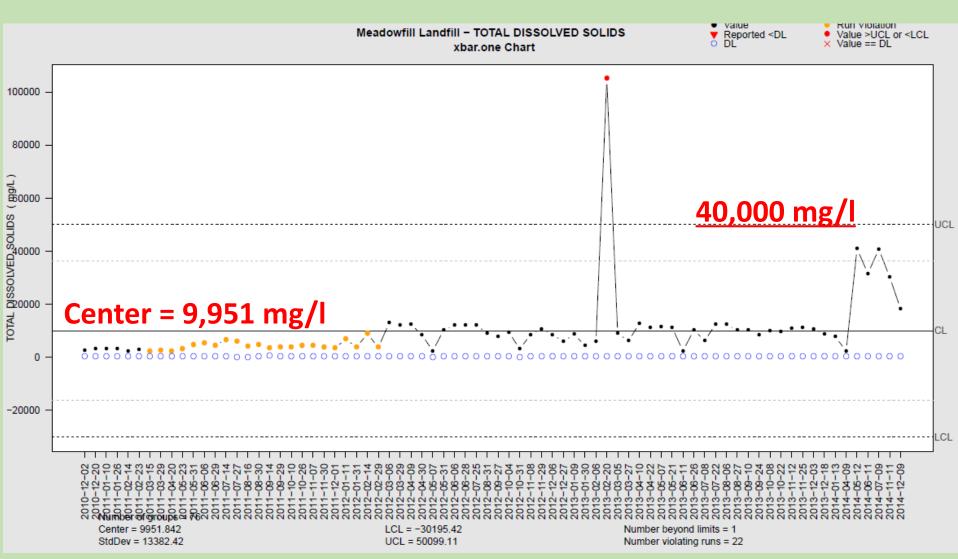
EPA Method 901.1

For Gamma Emitting Radionuclides In **Drinking water**

Summary of test methods used

	Leachate Samples	Solid Samples
	Existing Data Set from WVDEP	Samples obtained by Marshall U.
(900.0	
	903.1	
	904.0	
	900.0M	
	SM7110C & EPA 9310	
	Newer samples by Marshall U.	Newer Samples by Marshall U.
(900.0	901.1
	903.1	9310
	904.0	900.0
	SM7110C	

These SEVEN test protocols were used with NO discussion of WHY any specific one was used.


EPA TEST METHOD 900.0

Technical Notes for EPA Method 900.0 — Gross Alpha and Gross Beta Radioactivity in Drinking Water

1.9 Drinking water samples with high levels of solids will prove challenging for this technique as the solids will contribute significantly to self-absorption of the alpha and beta particles

The alternate method for Gross Alpha Screening, 900.1 is meant for radium isotopes in water with **HIGH DISSOLVED SOLIDS** ...recommended if the sample has solid loading of > 500 ppm.

Total Dissolved Solids in Leachate at Meadowfill Landfill

TENORM Analytical Measurements

May 12, 2014

Techniques

- GAB Screen (900.0, 9310)
 - Cost vs. TDS Limitation
- GAB Co-precip (SM7110C)
 - Robust vs. Cost
- Radiochemical (903.1, 904.0, 9315, 9320)
 - MDC & speed vs. matrix effects
- Gamma Spec (901.1)
 - Selectivity vs. sensitivity & speed?

Shale Related Challenges

Dissolved solids

100 mg limit for 900.0

Used with perhission

Conclusion

- Presence of dissolved Radium species may be indicated by increased Cation, Anion, or <u>Dissolved Solids</u> concentrations
- In the presence of these high concentration interferents, traditional methods for Radium analysis may result in erroneous results
 - Dilution may remove interferences but result in increased detection limits and decreased counting efficiency
- Use of Gamma-Spectroscopy for analysis may be more appropriate for these matrices

What we Do not Know

Radiation Detectors at the Scales at Wetzel County Landfill

They Look Good, they are brand new

—but they will not detect Radium 226

From the manufacturer

"Portions of Radium 226/228 may be detected but our gate monitor systems do not "quantify" isotopes"

"Radium contains Alpha and Beta particles; these cannot travel far or penetrate like Gamma waves.

Therefore they are nearly impossible to detect with a gate monitor scintillator detector through a metal sided vehicle".

Known Problems

- Inaccurate test methods are being used to measure the radioactivity in leachate with high Total Dissolved Solids
- Horizontal drill cuttings are <u>NEVER REQUIRED</u> to be tested for any radioactive isotopes
- Leachate is radioactive and drill cuttings are toxic to plants and aquatic life
- Goal-post radiation monitors will not likely detect Radium or Radon
- Waste—routine and HOT transferred among states in the
 Ohio River Basin is not tracked
- This is a <u>new problem</u> with <u>little historical guidance</u>

Our HIGH Priority TO-DO List

- 1. We must get this right
- 2. We must use proper test protocols
- 3. We must test the horizontal bore material for radiologicals
- 4. This will be a very long-lasting problem
- 5. We must accurately identify all risks to waters in the Ohio River Basin from shale waste

We Just Do NOT Know Now

The End

By Bill Hughes

Wetzel County, WV

Developed with support from: FracTracker Alliance and Ohio Valley Environmental Coalition