

Quantifying Methane Emissions from Abandoned Legacy Gas Wells in Indiana County, Pennsylvania

Molly Rudolchick, Dr. Steve Hovan Indiana University of Pennsylvania

300,000-750,000 abandoned wells in PA

Kittanning

Previous studies show variations in methane flow rates

Well Category	Number of Measurements	Mean (g $CH_4 h^{-1}$)	95% UCL (g $CH_4 h^{-1}$)
All wells (entire U.S.)	138	1.38	3.17
All wells (eastern U.S.)	12	14.00	32.87
All wells (western U.S.)	126	0.18	0.41
Plugged wells (entire U.S.)	119	0.002	0.005
Unplugged wells (entire U.S.)	19	10.02	22.47
Plugged (eastern U.S.)	6	0	NA
Unplugged (eastern U.S.)	6	28.01	64.00
Plugged (western U.S.)	113	0.002	0.005
Unplugged (western U.S.)	13	1.71	3.83

Townsend-Small et al., 2016

Previous studies show variations in methane flow rates

Modified from Kang, 2014

Well of focus is an Oriskany well completed in 1960s

FORMATION	TOP _{V.}	BOTTOM
Sandatone	0	120-
Sand & Shale	120	161
Water Sand	161	190
Sandstone	190	236
Coal	236	240
Sandstone	240	322
Coal	322	325
Sandy Shalo	325	365
Coal	365	369
Sandy Shalo	369	760
Sand & Shale	760	920
Sandy Shalo	920	1013
Shalo & Sand	1013	1163
Sandy Shale	1163	1650
Red Shale	1650	1825
Sand & Shale	1825	2450
Gray Shale & Lime Stks	2450	2785
Sandy Shale w/lime stks	2785	3030
Sand, Shale, lime strks	3030	3675
Dark Shale	3675	3885
Sandy lime & Shale	3885	4395
Shale	4395	6280
Shale w/lime streaks	6280	6400
Shale	6400	6958
Tully Lime	6958	6996
Challe willing atmoster	6006	75.94
Shale w/lime streaks	6996	7509
Onondaga Lime	7584	7601
Chert	7601	7717
Oriskany Sand	7717	7727
Total Depth		7730

Alicat Flow Meter

Orifice Well Tester

Minimal variability in high-resolution

Significant variability over a long timescale

Barometric pressure has a strong control on flow

Barometric pressure has a strong control on flow

Stronger control on high flows than low flows

Barometric pressure has a strong control on flow

Date and Time (24 hour)

Concentrations of venting gas

Flow Rate (cm³/min) x Methane Concentration x Density of methane (g/cm³) x 60 min = g CH₄ / hr

CH₄- 87%
CO₂- 4%
Undetermined- 9%

Well is a super - emitter compared to previous studies

Modified from Townsend-Small et al., 2016

Conclusions

- A single measurement will not accurately quantify venting flow
- Barometric pressure appeared to have the strongest control on flow
- This large emitter well is not representative of most plugged wells
- Further investigation of multiple wells is needed

Acknowledgments

- Dominion Higher Educational Partnership
- IUP
- IUP Geoscience Department
- Dr. Greg Mount
- Dr. Steve Hovan

Lunar Effect on Flow Rate

Flow Rate vs Air Temperature

Air Temperature (°C)

